27 resultados para fuzzy linear system
Resumo:
This works presents a proposal to make automatic the identification of energy thefts in the meter systems through Fuzzy Logic and supervisory like SCADA. The solution we find by to collect datas from meters at customers units: voltage, current, power demand, angles conditions of phasors diagrams of voltages and currents, and taking these datas by fuzzy logic with expert knowledge into a fuzzy system. The parameters collected are computed by fuzzy logic, in engineering alghorithm, and the output shows to user if the customer researched may be consuming electrical energy without to pay for it, and these feedbacks have its own membership grades. The value of this solution is a need for reduce the losses that already sets more than twenty per cent. In such a way that it is an expert system that looks for decision make with assertivity, and it looks forward to find which problems there are on site and then it wont happen problems of relationship among the utility and the customer unit. The database of an electrical company was utilized and the datas from it were worked by the fuzzy proposal and algorithm developed and the result was confirmed
Resumo:
Fuzzy intelligent systems are present in a variety of equipment ranging from household appliances to Fuzzy intelligent systems are present in a variety of equipment ranging from household appliances to small devices such as digital cameras and cell phones being used primarily for dealing with the uncertainties in the modeling of real systems. However, commercial implementations of Fuzzy systems are not general purpose and do not have portability to different hardware platforms. Thinking about these issues this work presents the implementation of an open source development environment that consists of a desktop system capable of generate Graphically a general purpose Fuzzy controller and export these parameters for an embedded system with a Fuzzy controller written in Java Platform Micro Edition To (J2ME), whose modular design makes it portable to any mobile device that supports J2ME. Thus, the proposed development platform is capable of generating all the parameters of a Fuzzy controller and export it in XML file, and the code responsible for the control logic that is embedded in the mobile device is able to read this file and start the controller. All the parameters of a Fuzzy controller are configurable using the desktop system, since the membership functions and rule base, even the universe of discourse of the linguistic terms of output variables. This system generates Fuzzy controllers for the interpolation model of Takagi-Sugeno. As the validation process and testing of the proposed solution the Fuzzy controller was embedded on the mobile device Sun SPOT ® and used to control a plant-level Quanser®, and to compare the Fuzzy controller generated by the system with other types of controllers was implemented and embedded in sun spot a PID controller to control the same level plant of Quanser®
Resumo:
A hierarchical fuzzy control scheme is applied to improve vibration suppression by using an electro-mechanical system based on the lever principle. The hierarchical intelligent controller consists of a hierarchical fuzzy supervisor, one fuzzy controller and one robust controller. The supervisor combines controllers output signal to generate the control signal that will be applied on the plant. The objective is to improve the performance of the electromechanical system, considering that the supervisor could take advantage of the different techniques based controllers. The robust controller design is based on a linear mathematical model. Genetic algorithms are used on the fuzzy controller and the supervisor tuning, which are based on non-linear mathematical model. In order to attest the efficiency of the hierarchical fuzzy control scheme, digital simulations were employed. Some comparisons involving the optimized hierarchical controller and the non-optimized hierarchical controller will be made to prove the efficiency of the genetic algorithms and the advantages of its use
Resumo:
The main objective of work is to show procedures to implement intelligent control strategies. This strategies are based on fuzzy scheduling of PID controllers, by using only standard function blocks of this technology. Then, the standardization of Foundation Fieldbus is kept. It was developed an environment to do the necessary tests, it validates the propose. This environment is hybrid, it has a real module (the fieldbus) and a simulated module (the process), although the control signals and measurement are real. Then, it is possible to develop controllers projects. In this work, a fuzzy supervisor was developed to schedule a network of PID controller for a non-linear plant. Analyzing its performance results to the control and regulation problem
Resumo:
The stability of synchronous generators connected to power grid has been the object of study and research for years. The interest in this matter is justified by the fact that much of the electricity produced worldwide is obtained with the use of synchronous generators. In this respect, studies have been proposed using conventional and unconventional control techniques such as fuzzy logic, neural networks, and adaptive controllers to increase the stabilitymargin of the systemduring sudden failures and transient disturbances. Thismaster thesis presents a robust unconventional control strategy for maintaining the stability of power systems and regulation of output voltage of synchronous generators connected to the grid. The proposed control strategy comprises the integration of a sliding surface with a linear controller. This control structure is designed to prevent the power system losing synchronism after a sudden failure and regulation of the terminal voltage of the generator after the fault. The feasibility of the proposed control strategy was experimentally tested in a salient pole synchronous generator of 5 kVA in a laboratory structure
Resumo:
Slugging is a well-known slugging phenomenon in multiphase flow, which may cause problems such as vibration in pipeline and high liquid level in the separator. It can be classified according to the place of its occurrence. The most severe, known as slugging in the riser, occurs in the vertical pipe which feeds the platform. Also known as severe slugging, it is capable of causing severe pressure fluctuations in the flow of the process, excessive vibration, flooding in separator tanks, limited production, nonscheduled stop of production, among other negative aspects that motivated the production of this work . A feasible solution to deal with this problem would be to design an effective method for the removal or reduction of the system, a controller. According to the literature, a conventional PID controller did not produce good results due to the high degree of nonlinearity of the process, fueling the development of advanced control techniques. Among these, the model predictive controller (MPC), where the control action results from the solution of an optimization problem, it is robust, can incorporate physical and /or security constraints. The objective of this work is to apply a non-conventional non-linear model predictive control technique to severe slugging, where the amount of liquid mass in the riser is controlled by the production valve and, indirectly, the oscillation of flow and pressure is suppressed, while looking for environmental and economic benefits. The proposed strategy is based on the use of the model linear approximations and repeatedly solving of a quadratic optimization problem, providing solutions that improve at each iteration. In the event where the convergence of this algorithm is satisfied, the predicted values of the process variables are the same as to those obtained by the original nonlinear model, ensuring that the constraints are satisfied for them along the prediction horizon. A mathematical model recently published in the literature, capable of representing characteristics of severe slugging in a real oil well, is used both for simulation and for the project of the proposed controller, whose performance is compared to a linear MPC
Resumo:
Electro-hydraulic servo-systems are widely employed in industrial applications such as robotic manipulators, active suspensions, precision machine tools and aerospace systems. They provide many advantages over electric motors, including high force to weight ratio, fast response time and compact size. However, precise control of electro-hydraulic systems, due to their inherent nonlinear characteristics, cannot be easily obtained with conventional linear controllers. Most flow control valves can also exhibit some hard nonlinearities such as deadzone due to valve spool overlap on the passage´s orifice of the fluid. This work describes the development of a nonlinear controller based on the feedback linearization method and including a fuzzy compensation scheme for an electro-hydraulic actuated system with unknown dead-band. Numerical results are presented in order to demonstrate the control system performance
Resumo:
The development of non-linear controllers gained space in the theoretical ambit and of practical applications on the moment that the arising of digital computers enabled the implementation of these methodologies. In comparison with the linear controllers more utilized, the non -linear controllers present the advantage of not requiring the linearity of the system to determine the parameters of control, which permits a more efficient control especially when the system presents a high level of non-linearity. Another additional advantage is the reduction of costs, since to obtain the efficient control through linear controllers it is necessary the utilization of sensors and more refined actuators than when it is utilized a non-linear controller. Among the non-linear theories of control, the method of control by gliding ways is detached for being a method that presents more robustness, before uncertainties. It is already confirmed that the adoption of compensation on the region of residual error permits to improve better the performance of these controllers. So, in this work it is described the development of a non-linear controller that looks for an association of strategy of control by gliding ways, with the fuzzy compensation technique. Through the implementation of some strategies of fuzzy compensation, it was searched the one which provided the biggest efficiency before a system with high level of nonlinearities and uncertainties. The electrohydraulic actuator was utilized as an example of research, and the results appoint to two configurations of compensation that permit a bigger reduction of the residual error
Resumo:
Despite the emergence of other forms of artificial lift, sucker rod pumping systems remains hegemonic because of its flexibility of operation and lower investment cost compared to other lifting techniques developed. A successful rod pumping sizing necessarily passes through the supply of estimated flow and the controlled wear of pumping equipment used in the mounted configuration. However, the mediation of these elements is particularly challenging, especially for most designers dealing with this work, which still lack the experience needed to get good projects pumping in time. Even with the existence of various computer applications on the market in order to facilitate this task, they must face a grueling process of trial and error until you get the most appropriate combination of equipment for installation in the well. This thesis proposes the creation of an expert system in the design of sucker rod pumping systems. Its mission is to guide a petroleum engineer in the task of selecting a range of equipment appropriate to the context provided by the characteristics of the oil that will be raised to the surface. Features such as the level of gas separation, presence of corrosive elements, possibility of production of sand and waxing are taken into account in selecting the pumping unit, sucker-rod strings and subsurface pump and their operation mode. It is able to approximate the inferente process in the way of human reasoning, which leads to results closer to those obtained by a specialist. For this, their production rules were based on the theory of fuzzy sets, able to model vague concepts typically present in human reasoning. The calculations of operating parameters of the pumping system are made by the API RP 11L method. Based on information input, the system is able to return to the user a set of pumping configurations that meet a given design flow, but without subjecting the selected equipment to an effort beyond that which can bear
Resumo:
The separation methods are reduced applications as a result of the operational costs, the low output and the long time to separate the uids. But, these treatment methods are important because of the need for extraction of unwanted contaminants in the oil production. The water and the concentration of oil in water should be minimal (around 40 to 20 ppm) in order to take it to the sea. Because of the need of primary treatment, the objective of this project is to study and implement algorithms for identification of polynomial NARX (Nonlinear Auto-Regressive with Exogenous Input) models in closed loop, implement a structural identification, and compare strategies using PI control and updated on-line NARX predictive models on a combination of three-phase separator in series with three hydro cyclones batteries. The main goal of this project is to: obtain an optimized process of phase separation that will regulate the system, even in the presence of oil gushes; Show that it is possible to get optimized tunings for controllers analyzing the mesh as a whole, and evaluate and compare the strategies of PI and predictive control applied to the process. To accomplish these goals a simulator was used to represent the three phase separator and hydro cyclones. Algorithms were developed for system identification (NARX) using RLS(Recursive Least Square), along with methods for structure models detection. Predictive Control Algorithms were also implemented with NARX model updated on-line, and optimization algorithms using PSO (Particle Swarm Optimization). This project ends with a comparison of results obtained from the use of PI and predictive controllers (both with optimal state through the algorithm of cloud particles) in the simulated system. Thus, concluding that the performed optimizations make the system less sensitive to external perturbations and when optimized, the two controllers show similar results with the assessment of predictive control somewhat less sensitive to disturbances
Resumo:
In this work, we propose a two-stage algorithm for real-time fault detection and identification of industrial plants. Our proposal is based on the analysis of selected features using recursive density estimation and a new evolving classifier algorithm. More specifically, the proposed approach for the detection stage is based on the concept of density in the data space, which is not the same as probability density function, but is a very useful measure for abnormality/outliers detection. This density can be expressed by a Cauchy function and can be calculated recursively, which makes it memory and computational power efficient and, therefore, suitable for on-line applications. The identification/diagnosis stage is based on a self-developing (evolving) fuzzy rule-based classifier system proposed in this work, called AutoClass. An important property of AutoClass is that it can start learning from scratch". Not only do the fuzzy rules not need to be prespecified, but neither do the number of classes for AutoClass (the number may grow, with new class labels being added by the on-line learning process), in a fully unsupervised manner. In the event that an initial rule base exists, AutoClass can evolve/develop it further based on the newly arrived faulty state data. In order to validate our proposal, we present experimental results from a level control didactic process, where control and error signals are used as features for the fault detection and identification systems, but the approach is generic and the number of features can be significant due to the computationally lean methodology, since covariance or more complex calculations, as well as storage of old data, are not required. The obtained results are significantly better than the traditional approaches used for comparison
Resumo:
Atualmente, há diferentes definições de implicações fuzzy aceitas na literatura. Do ponto de vista teórico, esta falta de consenso demonstra que há discordâncias sobre o real significado de "implicação lógica" nos contextos Booleano e fuzzy. Do ponto de vista prático, isso gera dúvidas a respeito de quais "operadores de implicação" os engenheiros de software devem considerar para implementar um Sistema Baseado em Regras Fuzzy (SBRF). Uma escolha ruim destes operadores pode implicar em SBRF's com menor acurácia e menos apropriados aos seus domínios de aplicação. Uma forma de contornar esta situação e conhecer melhor os conectivos lógicos fuzzy. Para isso se faz necessário saber quais propriedades tais conectivos podem satisfazer. Portanto, a m de corroborar com o significado de implicação fuzzy e corroborar com a implementação de SBRF's mais apropriados, várias leis Booleanas têm sido generalizadas e estudadas como equações ou inequações nas lógicas fuzzy. Tais generalizações são chamadas de leis Boolean-like e elas não são comumente válidas em qualquer semântica fuzzy. Neste cenário, esta dissertação apresenta uma investigação sobre as condições suficientes e necessárias nas quais três leis Booleanlike like — y ≤ I(x, y), I(x, I(y, x)) = 1 e I(x, I(y, z)) = I(I(x, y), I(x, z)) — se mantém válidas no contexto fuzzy, considerando seis classes de implicações fuzzy e implicações geradas por automorfismos. Além disso, ainda no intuito de implementar SBRF's mais apropriados, propomos uma extensão para os mesmos