26 resultados para Suspensões coloidais
Resumo:
In this research, the drying process of acerola waste was investigated by using a spouted bed drier. The process was conducted using high density polyethylene inert particles with the objective of producing an ascorbic acid-rich final product. The fruit waste was ground and used to prepare different water-maltodextrin suspensions. Initially, fluidynamical experiments were conducted in order to evaluate the feeding effect on the spouted bed drier fluidynamics behavior. The experimental planning 23 + 3 was used to investigate the effect of the following variables: solids concentration, drying air temperature, intermittence time, production efficiency, solids retention and product losses by elutriation of fine particles on drier walls. The effect of selected independent variables on the drier stability was also evaluated based on a parameter defined as the ratio between the feed suspension volume and the total inert particles volume. Finally, the powder quality was verified in experiments with fixed feed flow and varying air drying temperature, drying air velocity and intermittence time. It was observed that the suspension interferes in the spouted bed drier fluidynamics behavior, and higher air flow is necessary to stabilize the drier. The suspension also promotes the expansion of the spouted bed diameter, decreases the solid circulation and favors the air distribution at the flush area. All variables interfere in the spouted bed performance, and the solids concentration has a major effect on the material retention and losses. The intermittence time also has great effect on the stability and material retention. When it comes to production efficiency, the main effect observed was the drying air temperature. First order models were well adjusted to retention and losses data. The acerola powder presented ascorbic acid levels around 600 to 700 mg/100g. Similar moisture and ascorbic acid levels were obtained for powders obtained by spouted bed and spray drier. However, the powder production efficiency of the spray drier was lower when compared to spouted bed drier. When it comes to energetic analysis, the spray drier process was superior. The results obtained for spouted bed drier are promising and highly dependent on the operational parameters chosen, but in general, it is inferred that this drying process is adequate for paste and suspension drying
Resumo:
Photodynamic therapy (PDT) has been proposed as an alternative method for the treatment of biofilm-dependent oral diseases like dental caries. This therapy consists of simultaneous action of a visible light (L) and a photosensitizer (FS) in the presence of oxygen, which leads to production of different reactive oxygen species that can interact with the bacterial cell components, and promote cell death. This study aims to evaluate the antimicrobial action of PDT on oral bacteria in suspension, as well as the formation of mono and multi-species biofilms, in vitro, from a standard strain of Streptococcus mutans (ATCC 25175) and saliva samples, respectively. The dye methylene blue (MB) and toluidine blue (TB) were used at a concentration of 100 mg/ L and activated by halogen light (600 to 750 nm) from a modified hand held photopolymerizer (Ultralux ®, Dabi Atlante, Ribeirão Preto , São Paulo, Brazil.). Planktonic cultures were prepared and submitted to different experimental conditions: 1. PDT using TB 2. PDT using MB, 3. L+ FS- , 4. TB + L - ; 5. MB+ L-; 6. L- FS- (negative control) and 7. administration of 0.12% chlorhexidine digluconate (positive control) (Periogard ®, Colgate-Palmolive Company, New York, USA). The immediate and mediated action of PDT on bacterial suspensions, as well as its effect on biofilm formation were observed from the number of colony-forming units per milliliter (CFU/mL) and measures optical density (OD). The data were statistically analyzed using the Kruskal-Wallis and Mann-Whitney test for the significance level of 5%. According to the results, the PDT showed no antibacterial action on suspensions of S. mutans, regardless of the dye used. PDT with MB activated by halogen light was able to reduce 86.6% CFU/mL multi-species planktonic cultures, however, this reduction was not significant (p > 0.05). PDT showed antibacterial effect, mediate on multi-species planktonic cultures with TB (p < 0.001) and MB (p < 0.001), activated by halogen light. PDT was able to prevent the formation of multispecies biofilm, through the activation of TB by halogen light (p = 0.01). We conclude that activation of the dye toluidine blue and methylene blue, by halogen light (PDT) showed antimicrobial activity, compared to multi-species planktonic cultures prepared from saliva samples
Resumo:
Difusive processes are extremely common in Nature. Many complex systems, such as microbial colonies, colloidal aggregates, difusion of fluids, and migration of populations, involve a large number of similar units that form fractal structures. A new model of difusive agregation was proposed recently by Filoche and Sapoval [68]. Based on their work, we develop a model called Difusion with Aggregation and Spontaneous Reorganization . This model consists of a set of particles with excluded volume interactions, which perform random walks on a square lattice. Initially, the lattice is occupied with a density p = N/L2 of particles occupying distinct, randomly chosen positions. One of the particles is selected at random as the active particle. This particle executes a random walk until it visits a site occupied by another particle, j. When this happens, the active particle is rejected back to its previous position (neighboring particle j), and a new active particle is selected at random from the set of N particles. Following an initial transient, the system attains a stationary regime. In this work we study the stationary regime, focusing on scaling properties of the particle distribution, as characterized by the pair correlation function ø(r). The latter is calculated by averaging over a long sequence of configurations generated in the stationary regime, using systems of size 50, 75, 100, 150, . . . , 700. The pair correlation function exhibits distinct behaviors in three diferent density ranges, which we term subcritical, critical, and supercritical. We show that in the subcritical regime, the particle distribution is characterized by a fractal dimension. We also analyze the decay of temporal correlations
Resumo:
The principal effluent in the oil industry is the produced water, which is commonly associated to the produced oil. It presents a pronounced volume of production and it can be reflected on the environment and society, if its discharge is unappropriated. Therefore, it is indispensable a valuable careful to establish and maintain its management. The traditional treatment of produced water, usualy includes both tecniques, flocculation and flotation. At flocculation processes, there are traditional floculant agents that aren’t well specified by tecnichal information tables and still expensive. As for the flotation process, it’s the step in which is possible to separate the suspended particles in the effluent. The dissolved air flotation (DAF) is a technique that has been consolidating economically and environmentally, presenting great reliability when compared with other processes. The DAF is presented as a process widely used in various fields of water and wastewater treatment around the globe. In this regard, this study was aimed to evaluate the potential of an alternative natural flocculant agent based on Moringa oleifera to reduce the amount of oil and grease (TOG) in produced water from the oil industry by the method of flocculation/DAF. the natural flocculant agent was evaluated by its efficacy, as well as its efficiency when compared with two commercial flocculant agents normally used by the petroleum industry. The experiments were conducted following an experimental design and the overall efficiencies for all flocculants were treated through statistical calculation based on the use of STATISTICA software version 10.0. Therefore, contour surfaces were obtained from the experimental design and were interpreted in terms of the response variable removal efficiency TOG (total oil and greases). The plan still allowed to obtain mathematical models for calculating the response variable in the studied conditions. Commercial flocculants showed similar behavior, with an average overall efficiency of 90% for oil removal, however it is the economical analysis the decisive factor to choose one of these flocculant agents to the process. The natural alternative flocculant agent based on Moringa oleifera showed lower separation efficiency than those of commercials one (average 70%), on the other hand this flocculant causes less environmental impacts and it´s less expensive
Resumo:
The advancement of nanotechnology in the synthesis and characterisation of nanoparticles (NP's) has played an important role in the development of new technologies for various applications of nano-scale materials that have unique properties. The scientific development in the last decades in the field of nanotechnology has sought ceaselessly, the discovery of new materials for the most diverse applications, such as biomedical areas, chemical, optical, mechanical and textiles. The high bactericidal efficiency of metallic nanoparticles (Au and Ag), among other metals is well known, due to its ability to act in the DNA of fungi, viruses and bacteria, interrupting the process of cellular respiration, making them important means of study, in addition to its ability to protect UVA and UVB. The present work has as its main objective the implementation of an innovative method in the impregnation of nanoparticles of gold in textile substrate, functionalized with chitosan, by a dyeing process by exhaustion, with the control of temperature, time and velocity, thus obtaining microbial characteristics and UV protection. The exhausted substrates with colloidal solutions of NPAu's presented the colours, lilac and red (soybean knits) due to their surface plasmon peak around 520-540 nm. The NPAu's were synthesized chemically, using sodium citrate as a reducing agent and stabilizer. The material was previously cationised with chitosan, a natural polyelectrolyte, with the purpose of functionalising it to enhance the adsorption of colloid, at concentrations of 5, 7, 10 and 20 % of the bonding agent on the weight of the material (OWM). It was also observed, through an experimental design 23 , with 3 central points, which was the best process of exhaustion of the substrates, using the following factors: Time (min.), temperature (OC) and concentration of the colloid (%), having as a response to variable K/S (ABSORBÂNCIA/ Kubelka-Munk) of the fibres. Furthermore, it was evidenced as the best response, the following parameters: concentration 100%, temperature 70 ºC and time 30 minutes. The substrate with NPAu was characterised by XRD; thermal analysis using TGA; microstructural study using SEM/EDS and STEM, thus showing the NP on the surface of the substrate confirming the presence of the metal. The substrates showed higher washing fastness, antibacterial properties and UV radiation protection.
Resumo:
Triamcinolone is a relevant anti-inflammatory costicosteroid drug, used mainly by injectable suspensions due its poor water solubility. The association of triamcinolone with cyclodextrins and co-solvents (triethanolamine TEA and N-methylpirrolidone NMP) was held to solubilize the drug and explain the involved interactions. Phase-solubility diagrams showed that triamcinolone was solubilized forming incredible stable complexes with cyclodextrins, in which bests results were observed applying randomyl-methylated-beta-cyclodextrin (RMβCD) (161 fold on increased solubility). The co-solvents TEA and NMP also enhanced drug solubility 1.4 and 6.7 fold, respectively. The association of both co-solvents with CDs seems decreased complexation stability, but enables higher amount of uncomplexed drug. Experimental magnetic resonance 2D-ROESY and theoretical molecular modeling studies demonstrated TRI-CDs interactions and elucidated the structure of formed complex, which occurred due to the inclusion of ring A of TRI on CDs cavity. Physicochemical aspects of solid binary and ternary complexes prepared by spray drying were assessed by using FTIR, X-ray diffraction and SEM photographs. Dissolution studies showed that binary and ternary associations presented higher dissolution efficacy in detrimental to pure drug system. In addition, the ternary complex containing TEA and RMβCD allowed drug dissolution faster than binary complex with RMβCD. Therefore, given the higher solubility and drug dissolution rate, binary and ternary complexes are new raw materials with great potential for pharmaceuticals containing triamcinolone.
Resumo:
In view of a field research carried out by a team connected to the universe of body modification, it is possible to discern some uses and meanings linked to these forms of body interventions. Body modification or body change is part of the circuit of piercings and tattoos, although they are socially less thinned and more extreme, like scarifications, subcutaneous implants, bifurcated tongues, surfaces and body suspensions. The aim of this paper is to cast an anthropological glance on these practices, joining at the same context all the subjects involved with these techniques, placing them inside the same relational focus and capturing their journeys and trajectories. The discussions are concentrated on the notion of body building and urban life style. Ideas as personal distinctness and prestige imitation are also present in this universe, as well as matters attached to genre, pleasure, art, and to the so-called alternative circuit . This way, the ethnography so far presented here, reveals the complex and contemporaneous character of these practices of body markings in which the body appears as the central element in the experiences of the subjects of this study
Resumo:
The partial fixed prosthodontics restoration is used to rehabilitate form and function of partial or total compromised teeth, having to remain permanently joined to remainder tooth. The most useful material on prosthodontics is the feldspar porcelain, commercialized as aluminosilicate powders. Dental porcelains are presented with limited mechanical properties to rehabilitate extensive spaces. The association with Ni-Cr metallic systems (metal-ceramic system) allows that the metallic substructure compensates the fragile porcelain nature, preserving the thermal insulation and aesthetics desirable, as well as reducing the possibility of cracking during matication efforts. Cohesive flaws by low mechanical strength connect the metallic substructure to the oral environment, characterized by a electrolytic solution (saliva), by aggressive temperature, pH cyclic changes and mechanical requests. This process results on ionic liberation that could promote allergic or inflammatory responses, and/or clinical degradation of ceramometal system. The aim of this study was to evaluate the presence of an intermediate titanium layer on the microscopic fracture behavior of porcelains on ceramometal systems. Plasma deposition of titanium films result in regular passivating oxide layers which act as barriers to protect the metallic substrate against the hazardous effects of corrosive saliva. Tribocorrosion tests were performed to simulate the oral environment and mechanical stress, making it possible the early detection of crack formation and growth on metal-ceramic systems, which estimate the adherence between the compounds of this system. Plain samples consisting of dental feldspar porcelain deposited either onto metallic substrates or titanium films were fired and characterized by scanning electron microscopy. The result showed that the titanium film improved the adherence of the system compared to conventional metal-ceramic interfaces, thus holding crack propagation
Resumo:
Deep bed filtration occurs in several industrial and environmental processes like water filtration and soil contamination. In petroleum industry, deep bed filtration occurs near to injection wells during water injection, causing injectivity reduction. It also takes place during well drilling, sand production control, produced water disposal in aquifers, etc. The particle capture in porous media can be caused by different physical mechanisms (size exclusion, electrical forces, bridging, gravity, etc). A statistical model for filtration in porous media is proposed and analytical solutions for suspended and retained particles are derived. The model, which incorporates particle retention probability, is compared with the classical deep bed filtration model allowing a physical interpretation of the filtration coefficients. Comparison of the obtained analytical solutions for the proposed model with the classical model solutions allows concluding that the larger the particle capture probability, the larger the discrepancy between the proposed and the classical models
Resumo:
Injectivity decline, which can be caused by particle retention, generally occurs during water injection or reinjection in oil fields. Several mechanisms, including straining, are responsible for particle retention and pore blocking causing formation damage and injectivity decline. Predicting formation damage and injectivity decline is essential in waterflooding projects. The Classic Model (CM), which incorporates filtration coefficients and formation damage functions, has been widely used to predict injectivity decline. However, various authors have reported significant discrepancies between Classical Model and experimental results, motivating the development of deep bed filtration models considering multiple particle retention mechanisms (Santos & Barros, 2010; SBM). In this dissertation, inverse problem solution was studied and a software for experimental data treatment was developed. Finally, experimental data were fitted using both the CM and SBM. The results showed that, depending on the formation damage function, the predictions for injectivity decline using CM and SBM models can be significantly different
Resumo:
Modeling transport of particulate suspensions in porous media is essential for understanding various processes of industrial and scientific interest. During these processes, particles are retained due to mechanisms like size exclusion (straining), adsorption, sedimentation and diffusion. In this thesis, a mathematical model is proposed and analytical solutions are obtained. The obtained analytic solutions for the proposed model, which takes pore and particle size distributions into account, were applied to predict the particle retention, pore blocking and permeability reduction during dead-end microfiltration in membranes. Various scenarios, considering different particle and pore size distributions were studied. The obtained results showed that pore blocking and permeability reduction are highly influenced by the initial pore and particle size distributions. This feature was observed even when different initial pore and particle size distributions with the same average pore size and injected particle size were considered. Finally, a mathematical model for predicting equivalent permeability in porous media during particle retention (and pore blocking) is proposed and the obtained solutions were applied to study permeability decline in different scenarios