49 resultados para Minimos quadrados
Resumo:
The present work has as objective to present a method of project and implementation of controllers PID, based on industrial instrumentation. An automatic system of auto-tunning of controllers PID will be presented, for systems of first and second order. The software presented in this work is applied in controlled plants by PID controllers implemented in a CLP. Software is applied to make the auto-tunning of the parameters of controller PID of plants that need this tunning. Software presents two stages, the first one is the stage of identification of the system using the least square recursive algorithm and the second is the stage of project of the parameters of controller PID using the root locus algorithm. An important fact of this work is the use of industrial instrumentation for the accomplishment of the experiments. The experiments had been carried through in controlled real plants for controllers PID implemented in the CLP. Thus has not only one resulted obtained with theoreticians experiments made with computational programs, and yes resulted obtained of real systems. The experiments had shown good results gotten with developed software
Resumo:
There are two main approaches for using in adaptive controllers. One is the so-called model reference adaptive control (MRAC), and the other is the so-called adaptive pole placement control (APPC). In MRAC, a reference model is chosen to generate the desired trajectory that the plant output has to follow, and it can require cancellation of the plant zeros. Due to its flexibility in choosing the controller design methodology (state feedback, compensator design, linear quadratic, etc.) and the adaptive law (least squares, gradient, etc.), the APPC is the most general type of adaptive control. Traditionally, it has been developed in an indirect approach and, as an advantage, it may be applied to non-minimum phase plants, because do not involve plant zero-pole cancellations. The integration to variable structure systems allows to aggregate fast transient and robustness to parametric uncertainties and disturbances, as well. In this work, a variable structure adaptive pole placement control (VS-APPC) is proposed. Therefore, new switching laws are proposed, instead of using the traditional integral adaptive laws. Additionally, simulation results for an unstable first order system and simulation and practical results for a three-phase induction motor are shown
Resumo:
This work presents a modelling and identification method for a wheeled mobile robot, including the actuator dynamics. Instead of the classic modelling approach, where the robot position coordinates (x,y) are utilized as state variables (resulting in a non linear model), the proposed discrete model is based on the travelled distance increment Delta_l. Thus, the resulting model is linear and time invariant and it can be identified through classical methods such as Recursive Least Mean Squares. This approach has a problem: Delta_l can not be directly measured. In this paper, this problem is solved using an estimate of Delta_l based on a second order polynomial approximation. Experimental data were colected and the proposed method was used to identify the model of a real robot
Resumo:
The control, automation and optimization areas help to improve the processes used by industry. They contribute to a fast production line, improving the products quality and reducing the manufacturing costs. Didatic plants are good tools for research in these areas, providing a direct contact with some industrial equipaments. Given these capabilities, the main goal of this work is to model and control a didactic plant, which is a level and flow process control system with an industrial instrumentation. With a model it is possible to build a simulator for the plant that allows studies about its behaviour, without any of the real processes operational costs, like experiments with controllers. They can be tested several times before its application in a real process. Among the several types of controllers, it was used adaptive controllers, mainly the Direct Self-Tuning Regulators (DSTR) with Integral Action and the Gain Scheduling (GS). The DSTR was based on Pole-Placement design and use the Recursive Least Square to calculate the controller parameters. The characteristics of an adaptive system was very worth to guarantee a good performance when the controller was applied to the plant
Resumo:
The pattern classification is one of the machine learning subareas that has the most outstanding. Among the various approaches to solve pattern classification problems, the Support Vector Machines (SVM) receive great emphasis, due to its ease of use and good generalization performance. The Least Squares formulation of SVM (LS-SVM) finds the solution by solving a set of linear equations instead of quadratic programming implemented in SVM. The LS-SVMs provide some free parameters that have to be correctly chosen to achieve satisfactory results in a given task. Despite the LS-SVMs having high performance, lots of tools have been developed to improve them, mainly the development of new classifying methods and the employment of ensembles, in other words, a combination of several classifiers. In this work, our proposal is to use an ensemble and a Genetic Algorithm (GA), search algorithm based on the evolution of species, to enhance the LSSVM classification. In the construction of this ensemble, we use a random selection of attributes of the original problem, which it splits the original problem into smaller ones where each classifier will act. So, we apply a genetic algorithm to find effective values of the LS-SVM parameters and also to find a weight vector, measuring the importance of each machine in the final classification. Finally, the final classification is obtained by a linear combination of the decision values of the LS-SVMs with the weight vector. We used several classification problems, taken as benchmarks to evaluate the performance of the algorithm and compared the results with other classifiers
Resumo:
A modelagem de processos industriais tem auxiliado na produção e minimização de custos, permitindo a previsão dos comportamentos futuros do sistema, supervisão de processos e projeto de controladores. Ao observar os benefícios proporcionados pela modelagem, objetiva-se primeiramente, nesta dissertação, apresentar uma metodologia de identificação de modelos não-lineares com estrutura NARX, a partir da implementação de algoritmos combinados de detecção de estrutura e estimação de parâmetros. Inicialmente, será ressaltada a importância da identificação de sistemas na otimização de processos industriais, especificamente a escolha do modelo para representar adequadamente as dinâmicas do sistema. Em seguida, será apresentada uma breve revisão das etapas que compõem a identificação de sistemas. Na sequência, serão apresentados os métodos fundamentais para detecção de estrutura (Modificado Gram- Schmidt) e estimação de parâmetros (Método dos Mínimos Quadrados e Método dos Mínimos Quadrados Estendido) de modelos. No trabalho será também realizada, através dos algoritmos implementados, a identificação de dois processos industriais distintos representados por uma planta de nível didática, que possibilita o controle de nível e vazão, e uma planta de processamento primário de petróleo simulada, que tem como objetivo representar um tratamento primário do petróleo que ocorre em plataformas petrolíferas. A dissertação é finalizada com uma avaliação dos desempenhos dos modelos obtidos, quando comparados com o sistema. A partir desta avaliação, será possível observar se os modelos identificados são capazes de representar as características estáticas e dinâmicas dos sistemas apresentados nesta dissertação
Resumo:
The objective of this work was the development and improvement of the mathematical models based on mass and heat balances, representing the drying transient process fruit pulp in spouted bed dryer with intermittent feeding. Mass and energy balance for drying, represented by a system of differential equations, were developed in Fortran language and adapted to the condition of intermittent feeding and mass accumulation. Were used the DASSL routine (Differential Algebraic System Solver) for solving the differential equation system and used a heuristic optimization algorithm in parameter estimation, the Particle Swarm algorithm. From the experimental data food drying, the differential models were used to determine the quantity of water and the drying air temperature at the exit of a spouted bed and accumulated mass of powder in the dryer. The models were validated using the experimental data of drying whose operating conditions, air temperature, flow rate and time intermittency, varied within the limits studied. In reviewing the results predicted, it was found that these models represent the experimental data of the kinetics of production and accumulation of powder and humidity and air temperature at the outlet of the dryer
Resumo:
Natural gas, although basically composed by light hydrocarbons, also presents contaminant gases in its composition, such as CO2 (carbon dioxide) and H2S (hydrogen sulfide). The H2S, which commonly occurs in oil and gas exploration and production activities, causes damages in oil and natural gas pipelines. Consequently, the removal of hydrogen sulfide gas will result in an important reduction in operating costs. Also, it is essential to consider the better quality of the oil to be processed in the refinery, thus resulting in benefits in economic, environmental and social areas. All this facts demonstrate the need for the development and improvement in hydrogen sulfide scavengers. Currently, the oil industry uses several processes for hydrogen sulfide removal from natural gas. However, these processes produce amine derivatives which can cause damage in distillation towers, can cause clogging of pipelines by formation of insoluble precipitates, and also produce residues with great environmental impact. Therefore, it is of great importance the obtaining of a stable system, in inorganic or organic reaction media, able to remove hydrogen sulfide without formation of by-products that can affect the quality and cost of natural gas processing, transport, and distribution steps. Seeking the study, evaluation and modeling of mass transfer and kinetics of hydrogen removal, in this study it was used an absorption column packed with Raschig rings, where the natural gas, with H2S as contaminant, passed through an aqueous solution of inorganic compounds as stagnant liquid, being this contaminant gas absorbed by the liquid phase. This absorption column was coupled with a H2S detection system, with interface with a computer. The data and the model equations were solved by the least squares method, modified by Levemberg-Marquardt. In this study, in addition to the water, it were used the following solutions: sodium hydroxide, potassium permanganate, ferric chloride, copper sulfate, zinc chloride, potassium chromate, and manganese sulfate, all at low concentrations (»10 ppm). These solutions were used looking for the evaluation of the interference between absorption physical and chemical parameters, or even to get a better mass transfer coefficient, as in mixing reactors and absorption columns operating in counterflow. In this context, the evaluation of H2S removal arises as a valuable procedure for the treatment of natural gas and destination of process by-products. The study of the obtained absorption curves makes possible to determine the mass transfer predominant stage in the involved processes, the mass transfer volumetric coefficients, and the equilibrium concentrations. It was also performed a kinetic study. The obtained results showed that the H2S removal kinetics is greater for NaOH. Considering that the study was performed at low concentrations of chemical reagents, it was possible to check the effect of secondary reactions in the other chemicals, especially in the case of KMnO4, which shows that your by-product, MnO2, acts in H2S absorption process. In addition, CuSO4 and FeCl3 also demonstrated to have good efficiency in H2S removal
Resumo:
Waste stabilization ponds (WSP) have been widely used for sewage treatment in hot climate regions because they are economic and environmentally sustainable. In the present study a WSP complex comprising a primary facultative pond (PFP) followed by two maturation ponds (MP-1 and MP-2) was studied, in the city of Natal-RN. The main objective was to study the bio-degradability of organic matter through the determination of the kinetic constant k throughout the system. The work was carried out in two phases. In the first, the variability in BOD, COD and TOC concentrations and an analysis of the relations between these parameters, in the influent raw sewage, pond effluents and in specific areas inside the ponds was studied. In the second stage, the decay rate for organic matter (k) was determined throughout the system based on BOD tests on the influent sewage, pond effluents and water column samples taken from fixed locations within the ponds, using the mathematical methods of Least Squares and the Thomas equation. Subsequently k was estimated as a function of a hydrodynamic model determined from the dispersion number (d), using empirical methods and a Partial Hydrodynamic Evaluation (PHE), obtained from tracer studies in a section of the primary facultative pond corresponding to 10% of its total length. The concentrations of biodegradable organic matter, measured as BOD and COD, gradually reduced through the series of ponds, giving overall removal efficiencies of 71.95% for BOD and of 52.45% for COD. Determining the values for k, in the influent and effluent samples of the ponds using the mathematical method of Least Squares, gave the following values respectively: primary facultative pond (0,23 day-1 and 0,09 day-1), maturation 1 (0,04 day-1 and 0,03 day-1) and maturation 2 (0,03 day-1 and 0,08 day-1). When using the Thomas method, the values of k in the influents and effluents of the ponds were: primary facultative pond (0,17 day-1 and 0,07 day-1), maturation 1 (0,02 day-1 and 0,01 day-1) and maturation 2 (0,01 day-1 and 0,02 day-1). From the Partial Hydrodynamic Evaluation, in the first section of the facultative pond corresponding to 10% of its total length, it can be concluded from the dispersion number obtained of d = 0.04, that the hydraulic regime is one of dispersed flow with a kinetic constant value of 0.20 day-1
Resumo:
In the urban areas of the cities a larger problem of destiny of effluents of the treatment stations is verified due to the junction of the sewages in great volumes. This way the hidroponic cultive becomes important, for your intensive characteristic, as alternative of reuse. This work presents as objective the improvement of the relation hidric-nutritious of the hidroponic cultive of green forage (FVH) using treaty sewage. The production of forage was with corn (Zea mays L.), using double hybrid AG1051, in the experimental field of the Federal University of Rio Grande do Norte (UFRN), in the city of Natal-RN-Brazil. The treated effluent essentially domestic had origin of anaerobic reactor, type decant-digester of two cameras in series followed by anaerobic filters drowned. The hidroponic experimental system was composed of 08 stonemasons, with limited contours for masonry of drained ceramic brick, measuring each one 2,5 meters in length for 1,0 meter of width, with inclination of 4% (m/m) in the longitudinal sense, leveled carefully, in way to not to allow preferential roads in the flow. These dimensions, the useful area of Isow was of 2 square meters. The stonemasons of cultive were waterproof (found and lateral) with plastic canvas of 200 micres of thickness, in the white color. Controlled the entrance and exit of the effluente in the stonemasons, with cycles of 12,68 minutes, it being water of 1,18 minutes. The treatments were constituted of: T1 - 24 hours/day under it waters with flow of 2 L/min; T2 - 12 hours/day under waters with flow of 4 L/min; T3 - 12 hours/day under waters with flow of 2 L/min; and T4 - 16 hours/day under waters with flow of 3 L/min. There were evaluations of the evapotranspirometric demand, of hidroponic system affluent and effluent seeking to characterize and to monitor physical-chemical parameters as: pH, temperature, Electric Conductivity and Fecal Coliforms. This last one was analyzed to the 11 days after isow (DAS) and to the 14 DAS. The others were analyzed daily. I sow it was accomplished in the dates of February 21, 2007, first experiment, and April 10, 2007, second experiment. The density of Isow was of 2 kg of seeds, germinated before 48 hours, for square meter of stonemason. The statistic delineament was it casual entirely with two repetitions, in two experiments. It was applied Tukey test of average to five percent of probability. The cultivation cycle was of 14 DAS with evapotranspirometric demand maximum, reached by T1, of 67,44 mm/day. The analyzed parameters, as mass of green matter - Kg, productivity-Kg/m2 and reason of production of seed FVH/Kg used in Isow, the best result was presented by T1, obtaining value of up to 19,01 Kg/m2 of cultive. Without significant difference, the T4 presented greats values with 16 hours under cycle of water. The Treatments 2 and 3 with 12 hours under cycle of water, they obtained inferior results to the other Treatments. As treatment system, came efficient in the reduction of the salinity. T1 obtained reduction medium maxim of 62,5%, to the 7 DAS, in the amount of salts that enter in the system in they are absorbed in the cultivation. The cultivation FVH acted reducing the microbiologic load. Significant percentile of reduction they were reached, with up to 90,23% of reduction of Units of Colonies (UFC), constituting, like this, the Hidroponic System as good alternative of treatment of effluents of Reactors of high Efficiency
Resumo:
The aim of this study is to analyze the effect of migration on the income differential between northeastern migrants and nonmigrants and there by verify that the immigrants make up a group or not positively selected. The assumption that will be tested is that the presence of these immigrants affects income inequality in the region receptor, which may explain part of the high-stopping inequality in the Brazilian Northeast. The study is based on the literature selectivity migration introduced by Roy (1951), Borjas (1987) and Chiswick (1999). Does the estimated wage equation Mincer (1974) through the method of OLS, using information from the microdata sample of the 2010 Census, the Brazilian Institute of Geography and Statistics (IBGE). The results which correspond to the comparison of socioeconomic profile, showed that immigrants are more qualified and, on average, better paid than non-migrants. With the estimation of the model, it was found that, keeping all other variables constant, the income that immigrants earn is 14.43% higher than that of non-migrants. Thus, there was existence of positive selectivity in migration directed to the Northeast
Resumo:
In this work we used chemometric tools to classify and quantify the protein content in samples of milk powder. We applied the NIR diffuse reflectance spectroscopy combined with multivariate techniques. First, we carried out an exploratory method of samples by principal component analysis (PCA), then the classification of independent modeling of class analogy (SIMCA). Thus it became possible to classify the samples that were grouped by similarities in their composition. Finally, the techniques of partial least squares regression (PLS) and principal components regression (PCR) allowed the quantification of protein content in samples of milk powder, compared with the Kjeldahl reference method. A total of 53 samples of milk powder sold in the metropolitan areas of Natal, Salvador and Rio de Janeiro were acquired for analysis, in which after pre-treatment data, there were four models, which were employed for classification and quantification of samples. The methods employed after being assessed and validated showed good performance, good accuracy and reliability of the results, showing that the NIR technique can be a non invasive technique, since it produces no waste and saves time in analyzing the samples
Resumo:
In this work calibration models were constructed to determine the content of total lipids and moisture in powdered milk samples. For this, used the near-infrared spectroscopy by diffuse reflectance, combined with multivariate calibration. Initially, the spectral data were submitted to correction of multiplicative light scattering (MSC) and Savitzsky-Golay smoothing. Then, the samples were divided into subgroups by application of hierarchical clustering analysis of the classes (HCA) and Ward Linkage criterion. Thus, it became possible to build regression models by partial least squares (PLS) that allowed the calibration and prediction of the content total lipid and moisture, based on the values obtained by the reference methods of Soxhlet and 105 ° C, respectively . Therefore, conclude that the NIR had a good performance for the quantification of samples of powdered milk, mainly by minimizing the analysis time, not destruction of the samples and not waste. Prediction models for determination of total lipids correlated (R) of 0.9955, RMSEP of 0.8952, therefore the average error between the Soxhlet and NIR was ± 0.70%, while the model prediction to content moisture correlated (R) of 0.9184, RMSEP, 0.3778 and error of ± 0.76%
Resumo:
This work is combined with the potential of the technique of near infrared spectroscopy - NIR and chemometrics order to determine the content of diclofenac tablets, without destruction of the sample, to which was used as the reference method, ultraviolet spectroscopy, which is one of the official methods. In the construction of multivariate calibration models has been studied several types of pre-processing of NIR spectral data, such as scatter correction, first derivative. The regression method used in the construction of calibration models is the PLS (partial least squares) using NIR spectroscopic data of a set of 90 tablets were divided into two sets (calibration and prediction). 54 were used in the calibration samples and the prediction was used 36, since the calibration method used was crossvalidation method (full cross-validation) that eliminates the need for a validation set. The evaluation of the models was done by observing the values of correlation coefficient R 2 and RMSEC mean square error (calibration error) and RMSEP (forecast error). As the forecast values estimated for the remaining 36 samples, which the results were consistent with the values obtained by UV spectroscopy
Resumo:
In this work, the quantitative analysis of glucose, triglycerides and cholesterol (total and HDL) in both rat and human blood plasma was performed without any kind of pretreatment of samples, by using near infrared spectroscopy (NIR) combined with multivariate methods. For this purpose, different techniques and algorithms used to pre-process data, to select variables and to build multivariate regression models were compared between each other, such as partial least squares regression (PLS), non linear regression by artificial neural networks, interval partial least squares regression (iPLS), genetic algorithm (GA), successive projections algorithm (SPA), amongst others. Related to the determinations of rat blood plasma samples, the variables selection algorithms showed satisfactory results both for the correlation coefficients (R²) and for the values of root mean square error of prediction (RMSEP) for the three analytes, especially for triglycerides and cholesterol-HDL. The RMSEP values for glucose, triglycerides and cholesterol-HDL obtained through the best PLS model were 6.08, 16.07 e 2.03 mg dL-1, respectively. In the other case, for the determinations in human blood plasma, the predictions obtained by the PLS models provided unsatisfactory results with non linear tendency and presence of bias. Then, the ANN regression was applied as an alternative to PLS, considering its ability of modeling data from non linear systems. The root mean square error of monitoring (RMSEM) for glucose, triglycerides and total cholesterol, for the best ANN models, were 13.20, 10.31 e 12.35 mg dL-1, respectively. Statistical tests (F and t) suggest that NIR spectroscopy combined with multivariate regression methods (PLS and ANN) are capable to quantify the analytes (glucose, triglycerides and cholesterol) even when they are present in highly complex biological fluids, such as blood plasma