22 resultados para Crossover exponents


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the critical behavior of the one-dimensional pair contact process (PCP), using the Monte Carlo method for several lattice sizes and three different updating: random, sequential and parallel. We also added a small modification to the model, called Monte Carlo com Ressucitamento" (MCR), which consists of resuscitating one particle when the order parameter goes to zero. This was done because it is difficult to accurately determine the critical point of the model, since the order parameter(particle pair density) rapidly goes to zero using the traditional approach. With the MCR, the order parameter becomes null in a softer way, allowing us to use finite-size scaling to determine the critical point and the critical exponents β, ν and z. Our results are consistent with the ones already found in literature for this model, showing that not only the process of resuscitating one particle does not change the critical behavior of the system, it also makes it easier to determine the critical point and critical exponents of the model. This extension to the Monte Carlo method has already been used in other contact process models, leading us to believe its usefulness to study several others non-equilibrium models

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we study the phase transitions of the ferromagnetic three-color Ashkin-Teller Model in the hierarquical lattice generated by the Wheatstone bridge using real space renormalization group approach. With such technique we obtain the phase diagram and its critical points with respective critical exponents v. This model presents four phases: ferromagnetic, paramagnetic and two intermediates. Nine critical points were found, three of which are of Ising model type, three are of four states Potts model type, one is of eight states Potts model type and the last two which do not correspond to any Potts model with integer number of states. iv

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we study a connection between a non-Gaussian statistics, the Kaniadakis statistics, and Complex Networks. We show that the degree distribution P(k)of a scale free-network, can be calculated using a maximization of information entropy in the context of non-gaussian statistics. As an example, a numerical analysis based on the preferential attachment growth model is discussed, as well as a numerical behavior of the Kaniadakis and Tsallis degree distribution is compared. We also analyze the diffusive epidemic process (DEP) on a regular lattice one-dimensional. The model is composed of A (healthy) and B (sick) species that independently diffusive on lattice with diffusion rates DA and DB for which the probabilistic dynamical rule A + B → 2B and B → A. This model belongs to the category of non-equilibrium systems with an absorbing state and a phase transition between active an inactive states. We investigate the critical behavior of the DEP using an auto-adaptive algorithm to find critical points: the method of automatic searching for critical points (MASCP). We compare our results with the literature and we find that the MASCP successfully finds the critical exponents 1/ѵ and 1/zѵ in all the cases DA =DB, DA DB. The simulations show that the DEP has the same critical exponents as are expected from field-theoretical arguments. Moreover, we find that, contrary to a renormalization group prediction, the system does not show a discontinuous phase transition in the regime o DA >DB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis we investigate physical problems which present a high degree of complexity using tools and models of Statistical Mechanics. We give a special attention to systems with long-range interactions, such as one-dimensional long-range bondpercolation, complex networks without metric and vehicular traffic. The flux in linear chain (percolation) with bond between first neighbor only happens if pc = 1, but when we consider long-range interactions , the situation is completely different, i.e., the transitions between the percolating phase and non-percolating phase happens for pc < 1. This kind of transition happens even when the system is diluted ( dilution of sites ). Some of these effects are investigated in this work, for example, the extensivity of the system, the relation between critical properties and the dilution, etc. In particular we show that the dilution does not change the universality of the system. In another work, we analyze the implications of using a power law quality distribution for vertices in the growth dynamics of a network studied by Bianconi and Barabási. It incorporates in the preferential attachment the different ability (fitness) of the nodes to compete for links. Finally, we study the vehicular traffic on road networks when it is submitted to an increasing flux of cars. In this way, we develop two models which enable the analysis of the total flux on each road as well as the flux leaving the system and the behavior of the total number of congested roads

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, we address two issues of broad conceptual and practical relevance in the study of complex networks. The first is associated with the topological characterization of networks while the second relates to dynamical processes that occur on top of them. Regarding the first line of study, we initially designed a model for networks growth where preferential attachment includes: (i) connectivity and (ii) homophily (links between sites with similar characteristics are more likely). From this, we observe that the competition between these two aspects leads to a heterogeneous pattern of connections with the topological properties of the network showing quite interesting results. In particular, we emphasize that there is a region where the characteristics of sites play an important role not only for the rate at which they get links, but also for the number of connections which occur between sites with similar and dissimilar characteristics. Finally, we investigate the spread of epidemics on the network topology developed, whereas its dissemination follows the rules of the contact process. Using Monte Carlo simulations, we show that the competition between states (infected/healthy) sites, induces a transition between an active phase (presence of sick) and an inactive (no sick). In this context, we estimate the critical point of the transition phase through the cumulant Binder and ratio between moments of the order parameter. Then, using finite size scaling analysis, we determine the critical exponents associated with this transition

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The maintenance of masticatory function is especially important for patients who wear complete dentures due to the limitations of this type of prosthesis. Thus, the bilateral balanced occlusion (BBO) is used to achieve, besides other advantages, greater masticatory efficiency. However, analyzing critically the literature, it is observed that there is not enough scientific evidence that support the BBO as the most appropriate occlusal concept in complete dentures. This way, the purpose of the present study was to verify if complete dentures wearers with BBO present better masticatory efficiency and capacity than those with canine guidance (CG). A double-blind controlled crossover clinical trial was conducted. The sample was made of 24 completely edentulous patients. The subjects wore sets of complete dentures with both occlusal concepts for equal periods of 3 months. Objective data were collected through the masticatory efficiency test, performed by the colorimetric method, in which capsules of a synthetic material enclosing fuchsine- containing granules were used. Subjective data were recorded by patient´s ratings of their chewing function, which is the masticatory ability. No significant statistical difference was found for masticatory efficiency (p=0,0952) and masticatory ability (x2=0,5711/ p=0,4498) between the two occlusal concepts studied, as well as there was no correlation between these two variables (p=0,2985). Based on these results, it seems reasonable to use CG for the setup of complete dentures, since it is an easier and quicker technical procedure, until that future researches can come to complement this question

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Percolation Theory, functions like the probability that a given site belongs to the infinite cluster, average size of clusters, etc. are described through power laws and critical exponents. This dissertation uses a method called Finite Size Scaling to provide a estimative of those exponents. The dissertation is divided in four parts. The first one briefly presents the main results for Site Percolation Theory for d = 2 dimension. Besides, some important quantities for the determination of the critical exponents and for the phase transistions understanding are defined. The second shows an introduction to the fractal concept, dimension and classification. Concluded the base of our study, in the third part the Scale Theory is mentioned, wich relates critical exponents and the quantities described in Chapter 2. In the last part, through the Finite Size Scaling method, we determine the critical exponents fi and. Based on them, we used the previous Chapter scale relations in order to determine the remaining critical exponents