33 resultados para Castor beans
Resumo:
Green bean is considered as one of most traditional Brazilian Northeast dishes. Green beans drying preliminary experiments show that combine processes, fixed-bed/spouted bed, resulted in dehydrated beans with uniform humidity and the recovery of the beans properties after their rehydration. From this assays was defined an initial humidity suited for the spouted bed process. A fixed-bed pre-drying process until a level of 40% humidity gave the best results. The spouted bed characteristic hydrodynamic curves were presented for different beans loads, where changes in the respective beans physical properties were evidenced during the fluidynamic assay, due simultaneous drying process. One 22 factorial experimental design was carried out with three repetition in the central point, considering as entry variables: drying air velocity and temperature. The response variables were the beans brakeage, water fraction evaporated during 20 and 50 minutes of drying and the humidity ratio. They are presented still the modeling of the drying of the green beans in fine layer in the drier of tray and the modeling of the shrinking of the beans of the drying processes fixed-bed and spouted bed
Resumo:
Polyurethanes are very versatile macromolecular materials that can be used in the form of powders, adhesives and elastomers. As a consequence, they constitute important subject for research as well as outstanding materials used in several manufacturing processes. In addition to the search for new polyurethanes, the kinetics control during its preparation is a very important topic, mainly if the polyurethane is obtained via bulk polymerization. The work in thesis was directed towards this subject, particularly the synthesis of polyurethanes based castor oil and isophorone diisocianate. As a first step castor oil characterized using the following analytical methods: iodine index, saponification index, refraction index, humidity content and infrared absorption spectroscopy (FTIR). As a second step, test specimens of these polyurethanes were obtained via bulk polymerization and were submitted to swelling experiments with different solvents. From these experiments, the Hildebrand parameter was determined for this material. Finally, bulk polymerization was carried out in a differential scanning calorimetry (DSC) equipment, using different heating rates, at two conditions: without catalyst and with dibutyltin dilaurate (DBTDL) as catalyst. The DSC curves were adjusted to a kinetic model, using the isoconversional method, indicating the autocatalytic effect characteristic of this class of polymerization reaction
Resumo:
The green bean has organoleptic and nutritional characteristics that make it an important food source in tropical regions such as the Northeast of Brazil. It is a cheap source of protein and important for nutrition of rural population contributing significantly in subsistence farming of the families from Brazil s northeast. It is consumed in entire region and together with the dry meat and other products composes the menu of typical restaurants, being characterized as an important product for economy of Northeast. The green bean is consumed freshly harvested and has short cycle, being characterized as a very perishable food, which hampers your market. The drying method is an alternative to increase the lifetime and provide a reduction volume of this product making easier your transportation and storage. However is necessary to search ways of drying which keep the product quality not only from the nutritional standpoint but also organoleptic. Some characteristics may change with the drying process such as the coloring, the rehydration capacity and the grains cooking time. The decrease of drying time or of exposure of the grains to high temperature minimizes the effects related with the product quality loss. Among the techniques used to reduce the drying time and improve some characteristics of the product, stands out the osmotic dehydration, widely used in combined processes such as the pretreatment in drying food. Currently the use of the microwaves has been considered an alternative for drying food. The microwave energy generates heat inside of materials processed and the heating is practically instantaneous, resulting in shorter processing times and product quality higher to that obtained by conventional methods. Considering the importance of the green beans for the Northeast region, the wastefulness of production due to seasonality of the crop and your high perishability, the proposal of this thesis is the study of drying grain by microwaves with and without osmotic pretreatment, focusing on the search of conditions of processes which favor the rehydration of the product preserving your organoleptic characteristics. Based on the analysis of the results of osmotic dehydration and dielectric properties was defined the operating condition to be used in pretreatment of the green bean, with osmotic concentration in saline solution containing 12,5% of sodium chloride, at 40°C for 20 minutes. The drying of green bean by microwave was performed with and without osmotic pretreatment on the optimized condition. The osmotic predehydration favored the additional drying, reducing the process time. The rehydration of dehydrated green bean with and without osmotic pretreatment was accomplished in different temperature conditions and immersion time according to a factorial design 22, with 3 repetitions at the central point. According to results the better condition was obtained with the osmotically pretreated bean and rehydrated at a temperature of 60°C for 90 minutes. Sensory analysis was performed comparing the sample of the green bean in natura and rehydrated in optimized conditions, with and without osmotic pretreatment. All samples showed a good acceptance rate regarding the analyzed attributes (appearance, texture, color, odor and taste), with all values above 70%. Is possible conclude that the drying of green bean by microwave with osmotic pretreatment is feasible both in respect to technical aspects and rehydration rates and sensory quality of the product
Resumo:
Dans ce travail de recherche nous nous proposons d étudier l oeuvre d Anna de Noailles, poétesse et romancière française qui a publié ses premières poésies à la fin du XIXème siècle. Notre corpus est constitué de trois poèmes du recueil L Ombre des Jours, publié en 1902, à savoir : Jeunesse, Le Répit et Renaissance. Initialement, nous avons traité la mise en contexte sociale et culturelle de la fin du XIXème et du début du XXème siècle. Ensuite, nous avons abordé l espace interne de l oeuvre noaillienne qui se manifeste à travers des paysages de la nature. Nous avons remarqué que dans celle-ci, il y a une identification avec le moi lyrique. Enfin, nous avons analysé les trois poèmes de notre corpus. Nous soulignons que le manque de critiques et de recherche sur l oeuvre noailliene en France et l absence de recherche sur la poétesse dans le milieu académique brésilien nous ont motivée à réaliser cette étude. Ce travail a comme objectif mettre en évidence la richesse de la poétique d Anna de Noailles. Dans notre étude sur l oeuvre l ombre des jours, nous nous sommes apperçue que l auteur possède son propre style, elle ne cherchait pas à imiter un modèle littéraire particulier à ses contemporains. Dans son esthétique, nous avons remarqué le refuge dans la nature, dans le passé et aussi une forte évocation sensorielle. L univers lyrique de l oeuvre noaillienne est representé à travers des paysages bucoliques qui évoquent des saisons. Malgré ce retour à la nature, nous avons découvert des éléments que caractérisent la poésie moderne, comme la luminosité, la quête de l expansion, la superposition des images, entre autres. L espace de l ombre des jours est grandiloquent, la poétesse mentionne fréquemment son désir d expansion et pour cette raison, nous trouvons dans les poèmes des lieux ouverts, où le contact direct avec la lumière, l air et l eau devient possible. Dans l Ombre des Jours, il est rare qu une référence à un lieu clos soit traitée; si la poétesse le fait, c est pour exprimer la suspension de la passion
Resumo:
The gray mold, causal organism Amphobotrys ricini, is one of the major diseases of castor bean. Difficulties in managing plant disease arises form the limited understanding of the genetic structure of A. ricini, their complexity and variability make it difficult to control. Genetic structure can be used to infer the relative impact of different forces that influence the evolution of pathogen populations, that allow to predict the potencial for pathogen populations to envolve in agricultural ecosystems. Growers protect their crop by applying fungicides, but there aren t fungicides to provide significant control of gray mold of castor bean. The objectives of this work were use RAPD to determine the genetic structure of A. ricini subpopulations in Paraíba and assay the sensitivity of A. ricini isolates to azoxystrobin and carbendazim. To determine the genetic structure of A. ricini subpopulations in Paraíba, 23 isolates were colleted from two different geographic location (subpopulation). These isolates were analysed by RAPD using 22 random decamer primers, purchased from OPERON, produced a total of 80 markers polimorphics. The resulting matrixes were analysed using PopGene version 1.32. Sensitivity to azoxystrobin and carbendazim of 30 isolates, colleted form Paraíba and Alagoas, was estimated based on spore germination and colony growth inhibition. The stock solutions were added toV8 medium after sterilization to produce final concentrations of 0, 0.01, 0.1, 1, 10, and 100 µg/ml of carbendazim and 0, 0.001, 0.01, 0.1, 1, and 10 µg/ml of azoxystrobin. All statistical analyses were performed using SAS to estimate the dose that inhibited fungal growth by 50% (ED50 values). The genetic diversity within subpopulations (Hs=0,271) accounted for 92% of the total genetic diversity (Ht=0,293), while genetic diversity between subpopulations (Gst = 0,075) represented only 7,5%. The estimated number of migrants per generation (NM ) was 6,15. Nei s average gene identity across 80 RAPD loci was 0,9468. Individual ED50 values, for the 30 isolates screened for their sensitivity to azoxystrobin, ranged From a maximum of 0,168 µg/ml to a minimum of 0,0036 µg/ml. The ED50 values for carbendazim varied within the range of 0,026 to 0,316 µg/ml
Resumo:
In this work biodiesel was gotten through the transesterification reaction using the oil of castor as source of triglycerides and using the methylic route for obtaining of esters. For the characterization of biodiesel and its mixtures with mineral diesel oil, physical chemical parameters and several analytical techniques had been used, as well as: gas chromatography (GC), nuclear magnetic resonance of proton (1H NMR), infrared spectroscopy (IR) and thermal analysis. The chromatography confirmed the complete reaction of esters in biodiesel presenting a 97,08% conversion. The 1H - NMR presented singlet in 3,6 ppm corresponding to the hydrogen of the group ester RCOO CH3. The infrared presented a strong band in 1741 cm-1 referring to stretching C=O of ester and an average band in 1175 cm-1 referring C O deformation. With the data of thermal analysis it was possible to observe the thermal and oxidative stability of the samples changing the atmospheres of synthetic air and nitrogen, where stages of the thermal decomposition had been verified and had been attributed to the volatilization and/or decomposition of the triacylglycerides. The thermal degradation of the samples was carried through 150 and 210°C during 1, 12, 24 and 48 hours and was observed change in the thermogravimetric profile, therefore an increase in the number of stages of the thermal decomposition also occurred indicating characteristic intermediate composites of polymerization, being this confirmed through the rheological study that presented brusque increase of viscosity. The kinetic study showed that the activation energy has the following order: biodiesel > mineral diesel oil > mixtures biodiesel/diesel
Resumo:
The aim of this work was the preparation of polyols from reactions between castor oil and dietanolamine to increase the hydroxyl content and the network degree in the products to application in electronic devices. The polyols and the mixtures obtained were characterized by nuclear magnetic ressonance. Castor oil (CO) is a natural triglyceride - based polyol possessing hydroxyl groups, which allow several reactions that produce many different products. Among them are the polyurethanes (PU), which have been considered an ideal product for the covering of electricelectronic circuits, due to their excellent electrical, shock-absorbing, solvents resistance and hydrolytic stability properties. About 90% of the fatty acids present in the castor oil are ricinoleic acid (12-hydroxyoleic acid), while the remaining 10% correspond to non-hydroxylated fatty acids, mainly linoleic and oleic acids. The chemical analysis of castor oil indicates a hydroxyl number of 2.7. In this work, a polyol was obtained by the reaction of the CO with diethanolamine (DEA), in order to elevate the hydroxyl value from 160 to 230 or to 280 mgKOH/g, and characterized by nuclear magnetic resonance (NMR) 1H and 13C (Mercury 200). The polyadition of the resulting polyol with isophorone diisocianate (IPDI) was carried out at 60°C, and the reaction kinetics was followed by rheological measurements in a Haake RS150 rheometer. The electrical properties were determined in a HP LCR Meter 4262A, at 1.0 Hz and 10.0 KHz. The chemical analysis showed that the polyols obtained presented hydroxyl number from 230 to 280 mgKOH/g. The polyadition reaction with IPDI produced polyurethane resins with the following properties: hardness in the range from 45 shore A to 65 shore D (ASTM D2240); a dielectric constant of 3.0, at 25°C (ASTM D150). Those results indicate that the obtained resins present compatible properties to the similar products of fossil origin, which are used nowadays for covering electric-electronic circuits. Therefore, the PUs from castor oil can be considered as alternative materials of renewable source, free from the highly harmful petroleum - derived solvents
Resumo:
Enzymes have been widely used in biosynthesis/transformation of organic compounds in substitution the classic synthetic methods. This work is the first writing in literature of enzymatic synthesis for attainment the biossurfactants, the use glucose sucrose, ricinoleic acid e castor oil as substratum, and as biocatalyst, used immobilized lipase Thermomyces lanuginose, Rhizomucor miehei and the Candida antarctica lipase B; alkaline protease and neutral protease from Bacillus subtillis and yeast Saccharomyces cerevisiaeI. The analysis of HPLC (high performance liquid chromatography) showed that highest conversions were reached of used the alkaline protease from Bacillus subtillis. Laboratory tests, to evaluate the applicability, indicated that the produced biosurfactantes had good stability in presence of salts (NaCl) and temperature (55 e 25°C), they are effective in the reduction of the superficial tension and contac angle, but they have little foaming capacity, when compared with traditional detergents. These results suggest that the prepared surfactants have potential application as wetting agent and perforation fluid stabilizer
Resumo:
The separation oil-water by the use of flotation process is characterized by the involvement between the liquid and gas phases. For the comprehension of this process, it s necessary to analyze the physical and chemical properties command float flotation, defining the nature and forces over the particles. The interface chemistry has an important role on the flotation technology once, by dispersion of a gas phase into a liquid mixture the particles desired get stuck into air bubbles, being conduced to a superficial layer where can be physically separated. Through the study of interface interaction involved in the system used for this work, was possible to apply the results in an mathematical model able to determine the probability of flotation using a different view related to petroleum emulsions such as oil-water. The terms of probability of flotation correlate the collision and addition between particles of oil and air bubbles, that as more collisions, better is the probability of flotation. The additional probability was analyzed by the isotherm of absorption from Freundlich, represents itself the add probability between air bubbles and oil particles. The mathematical scheme for float flotation involved the injected air flow, the size of bubbles and quantity for second, the volume of float cell, viscosity of environment and concentration of demulsifier. The results shown that the float agent developed by castor oil, pos pH variation, salt quantity, temperature, concentration and water-oil quantity, presented efficient extraction of oil from water, up to 95%, using concentrations around 11 ppm of demulsifier. The best results were compared to other commercial products, codified by ―W‖ and ―Z‖, being observed an equivalent demulsifier power between Agflot and commercial product ―W‖ and superior to commercial product ―Z‖
Resumo:
Biodiesel is a fuel made up by mono-alkyl-esters of long chain fatty acids, derived from vegetable oils or animal fat. This fuel can be used in compression ignition engines for automotive propulsion or energy generation, as a partial or total substitute of fossil diesel fuel. Biodiesel can be processed from different mechanisms. Transesterification is the most common process for obtaining biodiesel, in which an ester compound reacts with an alcohol to form a new ester and a new alcohol. These reactions are normally catalyzed by the addition of an acid or a base. Initially sunflower, castor and soybean oil physicochemical properties are determined according to standard test methods, to evaluate if they had favorable conditions for use as raw material in the transesterification reaction. Sunflower, castor and soybean biodiesel were obtained by the methylic transesterification route in the presence of KOH and presented a yield above 93% m/m. The sunflower/castor and soybean/castor blends were studied with the aim of evaluating the thermal and oxidative stability of the biofuels. The biodiesel and blends were characterized by acid value, iodine value, density, flash point, sulfur content, and content of methanol and esters by gas chromatography (GC). Also studies of thermal and oxidative stability by Thermogravimetry (TG), Differential Scanning Calorimetry High Pressure (P-DSC) and dynamic method exothermic and Rancimat were carried out. Biodiesel sunflower and soybean are presented according to the specifications established by the Resolution ANP no 7/2008. Biodiesel from castor oil, as expected, showed a high density and kinematic viscosity. For the blends studied, the concentration of castor biodiesel to increased the density, kinematic viscosity and flash point. The addition of castor biodiesel as antioxidant in sunflower and soybean biodiesels is promising, for a significant improvement in resistance to autoxidation and therefore on its oxidative stability. The blends showed that compliance with the requirements of the ANP have been included in the range of 20-40%. This form may be used as a partial substitute of fossil diesel
Uma abordagem para a verificação do comportamento excepcional a partir de regras de designe e testes
Resumo:
Checking the conformity between implementation and design rules in a system is an important activity to try to ensure that no degradation occurs between architectural patterns defined for the system and what is actually implemented in the source code. Especially in the case of systems which require a high level of reliability is important to define specific design rules for exceptional behavior. Such rules describe how exceptions should flow through the system by defining what elements are responsible for catching exceptions thrown by other system elements. However, current approaches to automatically check design rules do not provide suitable mechanisms to define and verify design rules related to the exception handling policy of applications. This paper proposes a practical approach to preserve the exceptional behavior of an application or family of applications, based on the definition and runtime automatic checking of design rules for exception handling of systems developed in Java or AspectJ. To support this approach was developed, in the context of this work, a tool called VITTAE (Verification and Information Tool to Analyze Exceptions) that extends the JUnit framework and allows automating test activities to exceptional design rules. We conducted a case study with the primary objective of evaluating the effectiveness of the proposed approach on a software product line. Besides this, an experiment was conducted that aimed to realize a comparative analysis between the proposed approach and an approach based on a tool called JUnitE, which also proposes to test the exception handling code using JUnit tests. The results showed how the exception handling design rules evolve along different versions of a system and that VITTAE can aid in the detection of defects in exception handling code
Resumo:
Mainstream programming languages provide built-in exception handling mechanisms to support robust and maintainable implementation of exception handling in software systems. Most of these modern languages, such as C#, Ruby, Python and many others, are often claimed to have more appropriated exception handling mechanisms. They reduce programming constraints on exception handling to favor agile changes in the source code. These languages provide what we call maintenance-driven exception handling mechanisms. It is expected that the adoption of these mechanisms improve software maintainability without hindering software robustness. However, there is still little empirical knowledge about the impact that adopting these mechanisms have on software robustness. This work addresses this gap by conducting an empirical study aimed at understanding the relationship between changes in C# programs and their robustness. In particular, we evaluated how changes in the normal and exceptional code were related to exception handling faults. We applied a change impact analysis and a control flow analysis in 100 versions of 16 C# programs. The results showed that: (i) most of the problems hindering software robustness in those programs are caused by changes in the normal code, (ii) many potential faults were introduced even when improving exception handling in C# code, and (iii) faults are often facilitated by the maintenance-driven flexibility of the exception handling mechanism. Moreover, we present a series of change scenarios that decrease the program robustness
Resumo:
The use of fossil fuels has been considered one of reason for the increase of pollution in the atmosphere and it may be related to the climate changes. Then, the research of the new sources of fuels will be important. Considering this, the use of biodiesel has been considered not as bad as petrol. The castor bean (Ricinus communis L.) is an important oilseed, which belongs to Euphorbiaceae family, and the oil found in the seed has important characteristics for biodiesel. This plant is considered as “rustic” as it does not need so much water for its development and oil production. Due to this, this plant has been considered to be ideal in semi-arid regions, such as the Northeast of Brazil. The aim of his study is to better understand the responses to abiotic stresses (drought and salinity) from castor bean plants using morphological, physiological and molecular tools. In order to do this, the castor bean plants were subjected to salt stress (50, 100, 150 and 200 mM NaCl) in a controlled environment and drought stress (5, 10, 15 days and 10 days cyclic). After these treatments, these plants were subjected to different analyzes: a) the expansion and retention of water from leaves; b) anatomy using leaves and roots. Based on these results, we found that castor suffered decrease in leaf area with increase drought stress, however restricted water loss, probably by accumulation of compatible solutes in the leaves. The anatomy data showed modifications in the vascular system. These modifications observed suggested that castor bean plant may be resistant to stress as it was verified in 5 days of drought as well as in 100 mM NaCl. In both conditions, these plants were fine. Probably these plants keep some solutes in the cell and then maintain the cell tugor. The data obtained in this study gave a better idea how castor bean plant responds to abiotic stress conditions - drought and salt stress
Resumo:
The new development strategies should operate mainly in the areas of energy efficiency and sustainable agriculture. Thus, the substitution of fossil fuels with biofuels, such as biodiesel, is increasingly on the agenda. The cultivation of oilseed plants for biodiesel production must take place in integrated systems that enable best environmental benefits and are more economically significant. The objectives of this study were to assess the morphological, anatomic, and physiological characteristics of safflower (Carthamus tinctorius L., promising oilseed for biodiesel production) grown in monoculture and intercropping with cowpea bean (Vigna unguiculata L. Walp.); and identify socioeconomic family farmers and verify their acceptance about safflower as an energy crop. The methodology used for the analysis of safflower growth in monoculture and intercropped with beans, were morphoanatomical and histochemical analyzes, made with samples of plants grown in the field in two cropping systems throughout the range of the life cycle of these plants. There were no changes in growth and anatomy of plants, even in the consortium, which is satisfactory to indicate the intercropping system for those crops and can be a good alternative for the family farmer, who may have safflower as a source of income without giving up planting their livelihood. To check the acceptance of safflower by farmers, interviews were made to family farmers by Canudos agrovila in Ceará-Mirim/RN. It was noticed that many of them accept the introduction of safflower as oil crop, although unaware of the species, and that, being more resistant to drought, safflower help in the stability of families who depend on the weather conditions for success their current crops. In general, it is concluded that safflower has features that allows it to be grown in consortium for biodiesel production combined with the production of food, such as cowpea, and can be used enabling better development for family farmers.
Resumo:
The cowpea (Vigna unguiculata L. Walp) is a major food crops in northeastern Brazil. In Rio Grande do Norte, the cowpea, vigna beans or cowpea, as it is known, has great socioeconomic importance as a source of nutrients in food, with great emphasis among agricultural products. To improve productivity and resistance to pests, two cultivars were developed exclusively by EMPARN (Agricultural Research Corporation of Rio Grande do Norte), for breeding. The samples were provided by EMPARN, two improved (Potiguar and Laugh year) and two landraces (Rib of beef and Canapu). The seeds were ground and made into flour samples and the determination of moisture and ash by graviméticos methods, lipids by Soxhlet extraction, fibers with determiner fiber, carbohydrates by difference and minerals by ICP-OES were performed except the match analyzed by UVvis. The results showed a high fiber content (55.55% and 55.32% and 50.04% improved samples and 50.32% creole samples) and protein (25.52% and 25.27% improved and 27 samples, 23% and 24.99% creole samples). Comparing the results of the mineral content, the improved cultivars stood out in relation to Ca, Co, P, Mg, Mo and Na. Creole cultivars showed better results for Cu, Cr (low), Fe, Mn, Ni, K and Zn. The results will be important in future nutritional research and to build a table of Brazilian chemical composition of foods.