21 resultados para Cadeias lineares
Resumo:
Os Algoritmos Genético (AG) e o Simulated Annealing (SA) são algoritmos construídos para encontrar máximo ou mínimo de uma função que representa alguma característica do processo que está sendo modelado. Esses algoritmos possuem mecanismos que os fazem escapar de ótimos locais, entretanto, a evolução desses algoritmos no tempo se dá de forma completamente diferente. O SA no seu processo de busca trabalha com apenas um ponto, gerando a partir deste sempre um nova solução que é testada e que pode ser aceita ou não, já o AG trabalha com um conjunto de pontos, chamado população, da qual gera outra população que sempre é aceita. Em comum com esses dois algoritmos temos que a forma como o próximo ponto ou a próxima população é gerada obedece propriedades estocásticas. Nesse trabalho mostramos que a teoria matemática que descreve a evolução destes algoritmos é a teoria das cadeias de Markov. O AG é descrito por uma cadeia de Markov homogênea enquanto que o SA é descrito por uma cadeia de Markov não-homogênea, por fim serão feitos alguns exemplos computacionais comparando o desempenho desses dois algoritmos
Resumo:
The central objective of a study Non-Homogeneous Markov Chains is the concept of weak and strong ergodicity. A chain is weak ergodic if the dependence on the initial distribution vanishes with time, and it is strong ergodic if it is weak ergodic and converges in distribution. Most theoretical results on strong ergodicity assume some knowledge of the limit behavior of the stationary distributions. In this work, we collect some general results on weak and strong ergodicity for chains with space enumerable states, and also study the asymptotic behavior of the stationary distributions of a particular type of Markov Chains with finite state space, called Markov Chains with Rare Transitions
Resumo:
In this work we studied the method to solving linear equations system, presented in the book titled "The nine chapters on the mathematical art", which was written in the first century of this era. This work has the intent of showing how the mathematics history can be used to motivate the introduction of some topics in high school. Through observations of patterns which repeats itself in the presented method, we were able to introduce, in a very natural way, the concept of linear equations, linear equations system, solution of linear equations, determinants and matrices, besides the Laplacian development for determinants calculations of square matrices of order bigger than 3, then considering some of their general applications
Resumo:
The great interest in nonlinear system identification is mainly due to the fact that a large amount of real systems are complex and need to have their nonlinearities considered so that their models can be successfully used in applications of control, prediction, inference, among others. This work evaluates the application of Fuzzy Wavelet Neural Networks (FWNN) to identify nonlinear dynamical systems subjected to noise and outliers. Generally, these elements cause negative effects on the identification procedure, resulting in erroneous interpretations regarding the dynamical behavior of the system. The FWNN combines in a single structure the ability to deal with uncertainties of fuzzy logic, the multiresolution characteristics of wavelet theory and learning and generalization abilities of the artificial neural networks. Usually, the learning procedure of these neural networks is realized by a gradient based method, which uses the mean squared error as its cost function. This work proposes the replacement of this traditional function by an Information Theoretic Learning similarity measure, called correntropy. With the use of this similarity measure, higher order statistics can be considered during the FWNN training process. For this reason, this measure is more suitable for non-Gaussian error distributions and makes the training less sensitive to the presence of outliers. In order to evaluate this replacement, FWNN models are obtained in two identification case studies: a real nonlinear system, consisting of a multisection tank, and a simulated system based on a model of the human knee joint. The results demonstrate that the application of correntropy as the error backpropagation algorithm cost function makes the identification procedure using FWNN models more robust to outliers. However, this is only achieved if the gaussian kernel width of correntropy is properly adjusted.
Resumo:
This work presents the numerical analysis of nonlinear trusses summited to thermomechanical actions with Finite Element Method (FEM). The proposed formulation is so-called positional FEM and it is based on the minimum potential energy theorem written according to nodal positions, instead of displacements. The study herein presented considers the effects of geometric and material nonlinearities. Related to dynamic problems, a comparison between different time integration algorithms is performed. The formulation is extended to impact problems between trusses and rigid wall, where the nodal positions are constrained considering nullpenetration condition. In addition, it is presented a thermodynamically consistent formulation, based on the first and second law of thermodynamics and the Helmholtz free-energy for analyzing dynamic problems of truss structures with thermoelastic and thermoplastic behavior. The numerical results of the proposed formulation are compared with examples found in the literature.
Resumo:
Na unfolding method of linear intercept distributions and secction área distribution was implemented for structures with spherical grains. Although the unfolding routine depends on the grain shape, structures with spheroidal grains can also be treated by this routine. Grains of non-spheroidal shape can be treated only as approximation. A software was developed with two parts. The first part calculates the probability matrix. The second part uses this matrix and minimizes the chi-square. The results are presented with any number of size classes as required. The probability matrix was determined by means of the linear intercept and section area distributions created by computer simulation. Using curve fittings the probability matrix for spheres of any sizes could be determined. Two kinds of tests were carried out to prove the efficiency of the Technique. The theoretical tests represent ideal cases. The software was able to exactly find the proposed grain size distribution. In the second test, a structure was simulated in computer and images of its slices were used to produce the corresponding linear intercept the section area distributions. These distributions were then unfolded. This test simulates better reality. The results show deviations from the real size distribution. This deviations are caused by statistic fluctuation. The unfolding of the linear intercept distribution works perfectly, but the unfolding of section area distribution does not work due to a failure in the chi-square minimization. The minimization method uses a matrix inversion routine. The matrix generated by this procedure cannot be inverted. Other minimization method must be used