290 resultados para Caracterização arquitetural
Resumo:
Perovskites oxides win importance by its properties and commercials applications, they have a high thermal stability, have conductive properties, electrical, catalytic, electro catalytic, optical and magnetic, and are thermally stable. Because of these properties, are being widely studied as carriers of oxygen in the process of power generation with CO2 capture. In this work, the base carrier system La1-xMexNiO3 (Me = Ca and Sr) were synthesized by the method via the combustion reaction assisted by microwave. were synthesized from the combustion reaction method by microwave process. This method control the synthesi`s conditions to obtain materials with specific characteristics. The carriers calcined at 800 ° C/2h were analyzed by thermal analysis (TG-DTA), to verify its thermal stability, X-ray diffraction (XRD) to verify the phase formation, with subsequent refinement by the Rietveld method, to quantify the percentage of phases formed, the surface area by BET method was determined, scanning electron microscopy (SEM) was obtained to evaluate the material morphology and temperature programmed reduction (TPR) was done to observe the metallic phase of the nickel. After all proposed characterization and analysis of their results can be inferred to these oxides, key features so that they can be applied as carriers for combustion reactions in chemical cycles. The final products showed perovskite-type structures K2NiF4 (main) and ABO3.
Resumo:
Dynamic light scattering was used to monitor relaxation processes in chitosan solutions at concentrations within the semi-dilute and concentrated regimes, Kowhlrausch-Williams-Watts (KWW) equation being successfully fitted to intensity correlation function data. The dependence of KWW equation parameters on chitosan concentration indicated that an increase in concentration from semi-dilute to concentrated regimes resulted in narrowing the distribution of relaxation rates; temperature dependence indicated the relaxation process as described as an energy activated process, whose parameters were function of the interaction between chitosan chains (enthalpy of activation) and rigidity of chitosan conformations (pre-exponential factor)
Resumo:
O recente interesse em se obter materiais nanoporosos funcionalizados para aplicações como calisadores heterogêneos e adsorção de CO2, tem aumentado no meio industrial e cientifico. Nesta última aplicação, a introdução de grupos aminas, como os presentes em quitosana, em materiais nanoporosos do tipo SBA-15 para gerar interações específicas com o CO2 tem ganhado importância. Assim, neste trabalho foram realizadas a síntese do SBA-15 e posterior impregnação da CS no suporte mesoporoso através do método de impregnação por via úmida. Os materiais obtidos foram caracterizados por meio DRX, TG, DSC, MEV, FTIR e adsorção/dessorção de N2. Os resultados de DRX indicaram que a estrutura ordenada do suporte SBA-15 foi preservada após a impregnação e os cálculos mostraram que o diâmetro médio do poro e/ou a espessura média da parede (wt) foram alterados devido a introdução da quitosana nas amostras funcionalizadas. As curvas de TG e de DSC,corroboraram com os dados de DRX, indicando a presença da quitosana na estrutura mesoporosa do SBA-15, assim como as micrografias das amostras funcionalizadas, que possibilitou visualizar o estado de agregação do material obtido. As bandas características de absorção da CS na região IV foram identificadas e interpretadas nas amostras funcionalizadas confirmando as outras caracterizações. Foi visto também que a área superficial diminuiu nas amostras funcionalizadas, indicando a sucessiva incorporação do polímero no suporte mesoporoso. A energia de ativação do processo de degradação térmica da quitosana impregnada no suporte foi determinada por meio do método de cinética livre de Viazovkin e pelo método de Ozawa-Flay-Wall com os resultados indicando que o aumento da quitosana diminui em aproximadamente 10% a energia de ativação para sua degradação.
Resumo:
The recent interest in obtaining functionalized nanoporous materials for applications such as heterogeneous catalysts and adsorption of CO2 has increased today. In the latter application, the introduction of amino groups such as present in the chitosan (CS), in the nanoporous materials like SBA-15 to generate specific interactions with CO2 has gained importance. In this work were performed to hydrothermal synthesis of SBA-15 and subsequent impregnation of the CS in the support mesoporous by the method of the wet impregnation. The materials were characterized by TG/DTG, DSC, XRD, SEM, FTIR and adsorption / desorption of N2. The XRD showed that the ordered structure of the support SBA-15 was preserved after the impregnation and calculations have shown that the average pore diameter (Dp) and / or the average wall thickness (wt) have been changed due to introduction of the CS in the samples functionalized. The curves of TG and DSC data corroborates the XRD, indicating the presence of CS in the nanoporous structure of SBA-15, as well as micrographs of samples, which allowed the display state of aggregation of the material obtained. The characteristics of bands absorption in the region of the CS in the FTIR were identified and interpreted in the samples functionalized, confirming the further characterization. Measurements showed that the BET surface area decreases in the functionalized samples, indicating the successive incorporation of the polymer in the nanoporous support. The activation energy apparent (Ea) for the process of thermal degradation of CS in the impregnated support was determined by the methods of kinetic freedom Vyazovkin and Ozawa-Flynn-Wall with the results indicating that the sample functionalized CS/SBA-15 2,5 % was decrease of the Ea in their degradation of about 10% compared to 1,0 % CS/SBA-15 sample
Resumo:
A partially hydrolyzed polyacrylamide (HPAM) is a copolymer composed of acrylamide and sodium acrylate. Due to its wide range of applications there are different methods for its quantification and characterization in solution systems. Evaluation of C* is important to describe the transition from dilute to semi-dilute, behavior, when the solution will have its characteristic viscosity at concentrations above C*. This dissertation describes the determination of the critical concentration of overlap C* by potentiometry of partially hydrolyzed polyacrylamide - HPAM under acidic conditions. Based on the law of mass action and the proper treatment of the constant of aggregate formation, polymer molecular weight, degree of polymerization and hydrolysis were calculated. The inflection point was determined by the intersection of the resulting equation and mathematical development, statistically satisfy the experimental points relating the number of moles of monomers (n), equilibrium constant of formation of the entanglements (K*), pH, C* and acidity constant of the polymer (Ka). The viscometric parameters of C* showed a percentage difference compared to potentiometers. The results for the determination of C*, and degree of copolymerization molar mass proved to be a simple alternative for the characterization of polymers with protonated monomers and water soluble
Resumo:
Modified polyacrylamides with ≅ 0.2 mol % of N,N-dihexylacrylamide and hydrolysis degree from 0 to 25 % were synthesized by micellar copolymerization. The hydrophobic monomer was obtained by the reaction between acryloyl chloride and N,Ndihexylamine and characterized by infrared (IR) and proton nuclear magnetic resonance (1H NMR) spectroscopy. The polymer molecular structures were determined through 1H and 13C NMR spectroscopy and the polymers were studied in dilute and semi-dilute regimes by viscometry, rheometry, static light scattering and photon correlation spectroscopy, at the temperature range from 25 to 55 ºC. The data obtained by viscometry showed that the intrinsic viscosity from the hydrolyzed polymers is larger than the precursor polymers at the same ionic strength. The comparison between the charged polymers showed that the polymer with higher hydrolysis degree has a more compact structure in formation water (AFS). The increase of temperature led to an enhanced reduced viscosity to the polymers in Milli-Q water (AMQ), although, in brine, only the unhydrolyzed polymer had an increase in the reduced viscosity with the temperature, and the hydrolyzed derivatives had a decrease in the reduced viscosity. The static light scattering (SLS) analyses in salt solutions evidenced a decrease of weight-average molecular weight (⎯Mw) with the increase of the hydrolysis degree, due to the reduction of the thermodynamic interactions between polymer and solvent, which was evidenced by the decrease of the second virial coefficient (A2). The polymers showed more than one relaxation mode in solution, when analyzed by photon correlation spectroscopy, and these modes were attributed to isolated coils and aggregates of several sizes. The aggregation behavior depended strongly on the ionic strength, and also on the temperature, although in a lower extension. The polymers showed large aggregates in all studied conditions, however, their solutions did not displayed a good increase in water viscosity to be used in enhanced oil recovery (EOR) processes
Resumo:
Two methodologies were proposed to obtain micro and macroporous chitosan membranes, using two different porogenic agents. The methodologies proved to be effective in control the porosity as well as the pore size. Thus, microporous membranes were obtained through the physical blend of chitosan and polyethylene oxide (PEO) on an 80:20 (m/m) ratio, respectively, followed by the partial PEO solubilization in water at 80 ◦C. Macroporous chitosan membranes with asymmetric morphology were obtained using SiO2 as the porogenic agent. In this case, chiotsan-silica ratios used were 1:1, 1:3 and 1:5 (m/m). Membranes characterization were carried out by SEM (scanning electronic microscopy), X-ray diffraction, Fourier Transform Infrared Spectroscopy (FTIR), Thermal analysis (TG, DTG , DSC and DMTA). Permeability studies were performed using two model drugs: sodium sulfamerazine and sulfametoxipyridazine. By transmission FTIR it was possible to confirm the complete removal of SiO2. The SEM images confirmed the porous formation for both micro and macroporous membranes and also determined their respective sizes. By thermal analysis it was possible to show differences related with water sorption capacity as well as thermal stability for both membranes. DTG and DSC allowed evidencing the PEO presence on microporous membranes. The absorbance x time curves obtained on permeability tests for micro and macroporous membranes showed a linear behavior for both drugs in all range of concentration used. It was also observed, through P versus C curves, an increase in permeability of macroporous membranes according to the increase in porosity and also a decrease on P with increase in drug concentration. The influences of the drug molecular structure, as well as test temperatures were also evaluated
Resumo:
In recent years, studies about the physicochemical properties of mixed oxides, call attention of the scientific community, properties like as piezoelectricity, photoluminescence, or applications as catalysts, arise in these compounds, when their chemical compositions are modified, in this context some routes are employed in the synthesis of these materials, among which can be cited these methods: ceramic, combustion, co-precipitation, Pechini or polymeric precursor method, hydrothermal, sol-gel; these routes are divided into traditional routes or chemical routes. In this work were synthesized oxides with variable composition, from the thermal decomposition of titanium, cobalt, nickel and praseodymium nitrilotriacetates. The nitrilotriacetates were characterized by IR Spectroscopy (FTIR), Thermogravimetric (TG/ DTG) and Differential Scanning Calorimetry (DSC), while oxides have been characterized by X-ray diffraction (XRD), Spectrofluorimetry and IR Spectroscopy (FTIR). From FTIR data, it was demonstrated that the displacement of the band corresponding to the carboxylate group (νCOOH) at 1712 cm-1, present in nitrilotriacetic acid (H3NTA), for 1680-1545 cm-1, these stretches are characteristics of coordinated nitrilotriacetates, By thermal analysis (TG/DTG /DSC), it was suggested, that in an oxidizing atmosphere (air) oxides are obtained at lower temperatures than in an inert atmosphere N2(g). By results from X-ray Diffraction (XRD), it was determinated that the oxides are crystalline and the predominant phases obtained are summarized titanate phases rutile and ilmenite. By fluorimetry was observed that the intensity of emission bands are directly proportional to the concentration of ions Ni2+, Co2+ and Pr3+, and IR spectroscopy (FTIR) from oxides, demonstrated the disappearance of characteristic bands by nitrilotriacetates, determining the complete decomposition of the nitrilotriacetates in oxides
Resumo:
The cultivation of microalgae biomass in order to produce biodiesel arises as an extremely promising aspect, in that the microalgae culture includes short cycle of reproduction, smaller areas for planting and residual biomass rich in protein content. The present dissertation evaluates the performance and features, through spectrometry in the region of infrared with transformed Fourier (FTIR) and spectrometry in the region of UVvisible (UV-Vis), of the extracted lipid material (LM) using different techniques of cell wall disruption (mechanical agitation at low and at high spin and agitation associated with cavitation). The technique of gas chromatography (GC) brought to light the success of alkaline transesterification in the conversion of oil into methyl monoesters (MME), which was also analyzed by spectroscopic techniques (FTIR, proton magnetic resonance (1H NMR) and carbon (13C NMR). Through thermogravimetric analysis (TGA) were analyzed the lipid material (LM), biodiesel and the microalgae biomass. The method which provided the best results concerning the efficiency in extraction of the LP of Monoraphidium sp. (12,51%) was by mechanical agitation at high spin (14 000 rpm), for 2 hours being the ideal time, as shown by the t test. The spectroscopic techniques (1H NMR, 13C NMR and FTIR) confirmed that the structure of methyl monoesters and the chromatographic data (CG) revealed a high content of saturated fatty acid esters (about 70%) being the major constituent eicosanoic acid (33,7%), which justifies the high thermal stability of microalgae biodiesel. The TGA also ratified the conversion rate (96%) of LM into MME, pointing out the quantitative results compatible with the values obtained through GC (about 98%) and confirmed the efficiency of the extraction methods used, showing that may be a good technique to confirm the extraction of these materials. The content of LM microalgae obtained (12,51%) indicates good potential for using such material as a raw material for biodiesel production, when compared to oil content which can be obtained from traditional oil for this use, since the productivity of microalgae per hectare is much larger and requires an extremely reduced period to renew its cultivation
Resumo:
The synthesis of MFI-type zeolite membranes was carried by the process in situ or hydrothermal crystallization. We studied the homogenization time of the room temperature and gel filtration just before the crystallization step performed out in an oven, thus obtaining a more uniform zeolite film. The powder synthesized zeolite (structure type MFI, Silicalite) was characterized by several complementary techniques such as Xray diffraction (XRD), scanning electron microscopy (SEM), thermal analysis, temperature programmed desorption (TPD), Fourier Transform infrared spectroscopy (FTIR) and textural analysis by nitrogen adsorption (specific surface area). For the purpose of evaluating the quality of the layer supported on the ceramic support, N2 permeation tests were carried starting from room temperature to 600 °C, where values were observed values more appropriate permeation from 200 °C. With the data obtained, it was made into a graph of temperature versus permeation function, the curve of surface diffusion was found. For scanning electron microscopy, we observed the formation of homogeneous crystals and the zeolite film showed no fissures or cracks, indicating that the process of synthesis and subsequent treatments not damaged the zeolite layer on the support. Carried permeation studies were found values ranging from 3.64x10-6 to 3.78x10-6, 4.71x10-6 to 5.02x10-6, to pressures 20 and 25 psi, respectively. And the mixture xylenes/N2 values were between 5.39x10-6 to 5.67x10-6 and 8.13x10-6 to 8.36x10-6, also for pressures of 20 and 25 psi. The values found for the separation factor were 15.22 at 400 °C in the first experiment and 1.64 for the second experiment at a temperature of 150 °C. It is concluded that the Silicalite membrane was successfully synthesized and that it is effective in the separation of binary mixtures of xylenes
Resumo:
Among the various layered silicates, vermiculite has been used as one of the adsorbent material by presenting the ion exchange capacity which facilitates the removal of organic compounds which are potential pollutants in relation to the water surface. The importance of the modification of clay minerals by hydrophobization with carnauba wax establishes the increase in oil removal capacity in aqueous medium, it contributes to a better environment for life in ecosystems. The vermiculite when expanded decreases its hydrophobicity requiring the use of a hydrophobizing leaving - the organoclay. In this work were used in the process of modifying the particle sizes of vermiculite -18+16, -16 +20 and -20 +35 #. Samples of vermiculite hydrophobized with carnauba wax and clay mineral without hydrophobizing were characterized with physicochemical analyzes and analytical. Techniques were used: thermal analysis (thermogravimetry and derivative thermogravimetry), infrared spectroscopy, scanning electron microscopy, fluorescence rays - x adsorption tests. The TG / DTG was used to evaluate the thermal behavior of expanded vermiculite and carnauba wax and samples hidrofobizadas with percentages of 5, 10 and 15 % by weight of hydrophobizing. The results of FTIR confirmed increase of the characteristic signs of carnauba wax in samples hidrofobizadas as the greatest amount of hydrophobizing the clay mineral used in hydrophobization. Thermogravimetry and FTIR show based on the results that coating the surface of the vermiculite occur homogeneously. The data obtained by the technique of x-ray fluorescence with loss on ignition confirmed the results of thermogravimetric analysis in relation to the percentage of wax incorporated. The fluorescence indicates through information provided by the analysis shows that the material covered - is homogeneous. The mev inspection was used to texture and morphology of the clay mineral with and without carnauba wax. The scanning electron microscopy confirms the deposition of wax evenly over the surface of the mineral as indicated by the other techniques. To verify the adsorption capacity of the clay without hydrophobizing hydrophobized and used a fixed volume of water to 1 ½ liters in each experiment with 3 g to 50 g of oil sample. The results show that better extraction of oil for the material processed corresponds to 260 % relative to the weight of the sample coated and greater than 80 % of the oil drop in the system
Resumo:
This work involved the synthesis, characterization and proposing the molecular structure of coordination compounds involving ligands pyrazine-2-carboxamide (PZA) and 4- hydrazide acidic pyridine carboxylic (INH) and metals of the first transition series (M = Co2+, Ni2+ and Cu2+). For the characterization of the compounds used were analytical techniques such as infrared absorption spectroscopy average (FT-IR) molar conductivity measurements, CHN elemental analysis, EDTA Complexometric, measurement of melting point, X-ray diffraction by powder method, Thermogravimetry (TG) and Differential Thermal Analysis (DTA) and Simultaneous Differential Scanning Calorimetry (DSC). The absorption spectra in the infrared region suggested that the ligand coordination to the metal center occurs through the carbonyl oxygen atom and nitrogen alpha pyrazine ring to those complexes formed with PZA. For INH complexes with metal-ligand coordination is through the carbonyl oxygen and nitrogen of the terminal hydrazide grouping. The conductivity measurements of the complexes in aqueous solution they suggest to all behavior of the type 1:2 electrolytes, and conduct of non-electrolytes in acetonitrile. The results obtained by CHN elemental analysis and EDTA Complexometric allowed to infer the stoichiometry of the compounds synthesized. For all of the complexes obtained was possible to record the melting points, neither of which melted near the melting temperature of the free ligands. The X-ray diffraction showed that the complexes of pyrazinamide exhibited diffraction lines, suggesting that these compounds are crystalline, while compounds of isoniazid, with the exception of cobalt, exhibited diffraction lines, indicating that they are crystalline. The results from the TG-DTA and DSC allowed information regarding the dehydration and thermal decomposition of these complexes
Resumo:
The study of polymer blends has been an alternative method in the search field of new materials for obtaining materials with improved properties. In this work blends of poly(methyl methacrylate) (PMMA) and poly(ethylene oxide) (PEO) doped with titanium dioxide (TiO2) were studied. The PEO is a polymer semicrystalline structure varying between, 70 and 84% crystallinity, while the PMMA exhibits behavior amorphous in their structure. The use of TiO2 is related to corrosion-resistant of titanium as well as good heat transfer and other characteristics. The study of these polymer blends doped TiO2 gives the properties junction organic (polymer) and inorganic (oxide) which leads to modification of the properties of the resultant material. The blends were doped TiO2 (POE/PMMA/TiO2) in different proportions of the PMMA with the PEO and TiO2 fixed. The ratios were: 90/10/0,1; 85/15/0, 1; 80/20/0,1, 75/25/0,1 and 70/30/0,1. The resulting material was obtained in powder form and being characterized by Fourier Transformed Infrared (FTIR) Spectroscopy, Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and Electrochemical Impedance Spectroscopy (EIS). The infrared spectra (IR) for the blends in different ratios showed a band at 1744 cm-1, characteristic of the C=O stretching, which increases in intensity with increasing PMMA composition, while in the spectrum of pure PEO this band is absent. This may suggest that the interaction is occurring between the polymers. In the micrographs of the blends also observed change in their surfaces with variation of the composition of PMMA, contributing to the change of the electrical properties of the material. The EIS data showed that the material exhibited conductivity of the order of 10-6 S.cm-1. The blend in the ratio B2(85/15/0, 1) showed better conductivity, σ = 1.56 x 10-6 S.cm-1. It was observed that the diffusion coefficient for the blends, B5(70/30/0, 1) was the largest, 1.07 x 10-6 m2.s-1. The XRD data showing that, with the variation in the composition of the PMMA blend crystallinity of the material is decreased reaching a minimum B3(80/20/0,1), and then increases again. Thermal analysis suggests that blends made from the material obtained can be applied at room temperature
Resumo:
Biodiesel production has increased over the last decade because of the benefits associated with this fuel, including renewability, domestic feedstock, lower toxicity, and biodegradability. From 2008, the use of beef tallow as a feedstock for biodiesel production in Brazil has increased in significance, representing the second largest source of biodiesel, after soybeans. However, the performance of biodiesel in cold weather conditions is worse than diesel because of deposition of insoluble at low temperatures, accelerating the plugging of fuel filters and injectors of the vehicle engine. Studies have been conducted on beef tallow biodiesel, mostly related to the properties of thermal and oxidative stability. However, few studies have described the nature of the precipitate formed and its influence on product quality. Research suggests that the cause of deposition is related to the nature of saturated esters and monoacylglycerols as inducing agents. This study monitored the levels of mono-, diand triacylglycerols, the oxidation stability and the cold filter plugging point (CFPP) in beef tallow biodiesel samples from two commercial producers in Brazil for a period of twelve months. Filtered precipitates were analyzed by comparative techniques of GCFID, HPLC-UV/VIS, HPLC-MS-IT-TOF and TG to verify the nature, using monopalmitin and monostearin as reference standards. The formation of precipitate reduced the levels of monoacylglycerols in the beef tallow biodiesel. GC-FID and LCMS- IT-TOF results confirmed the nature of the deposit as saturated monoacylglycerols, predominantly monostearin and monopalmitin as the second major component. Moreover the TG analysis of the residue indicated similar thermal decomposition of the reference standards. The precipitate did not affect the oxidation stability of beef tallow biodiesel and the CFPP characteristic of blends up B60. However, the presence of iron reduced significantly the oxidation stability of biodiesel
Resumo:
Biodiesel production has increased over the last decade because of the benefits associated with this fuel, including renewability, domestic feedstock, lower toxicity, and biodegradability. From 2008, the use of beef tallow as a feedstock for biodiesel production in Brazil has increased in significance, representing the second largest source of biodiesel, after soybeans. However, the performance of biodiesel in cold weather conditions is worse than diesel because of deposition of insoluble at low temperatures, accelerating the plugging of fuel filters and injectors of the vehicle engine. Studies have been conducted on beef tallow biodiesel, mostly related to the properties of thermal and oxidative stability. However, few studies have described the nature of the precipitate formed and its influence on product quality. Research suggests that the cause of deposition is related to the nature of saturated esters and monoacylglycerols as inducing agents. This study monitored the levels of mono-, diand triacylglycerols, the oxidation stability and the cold filter plugging point (CFPP) in beef tallow biodiesel samples from two commercial producers in Brazil for a period of twelve months. Filtered precipitates were analyzed by comparative techniques of GCFID, HPLC-UV/VIS, HPLC-MS-IT-TOF and TG to verify the nature, using monopalmitin and monostearin as reference standards. The formation of precipitate reduced the levels of monoacylglycerols in the beef tallow biodiesel. GC-FID and LCMS- IT-TOF results confirmed the nature of the deposit as saturated monoacylglycerols, predominantly monostearin and monopalmitin as the second major component. Moreover the TG analysis of the residue indicated similar thermal decomposition of the reference standards. The precipitate did not affect the oxidation stability of beef tallow biodiesel and the CFPP characteristic of blends up B60. However, the presence of iron reduced significantly the oxidation stability of biodiesel