205 resultados para Matèria condensada
Resumo:
In this work we present a study for the structural, electronic and optical properties, at ambient conditions of SrSnO3, SrxBa1
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
Considering a quantum gas, the foundations of standard thermostatistics are investigated in the context of non-Gaussian statistical mechanics introduced by Tsallis and Kaniadakis. The new formalism is based on the following generalizations: i) Maxwell- Boltzmann-Gibbs entropy and ii) deduction of H-theorem. Based on this investigation, we calculate a new entropy using a generalization of combinatorial analysis based on two different methods of counting. The basic ingredients used in the H-theorem were: a generalized quantum entropy and a generalization of collisional term of Boltzmann equation. The power law distributions are parameterized by parameters q;, measuring the degree of non-Gaussianity of quantum gas. In the limit q
Resumo:
In this thesis, we study the thermo-electronic properties of the DNA molecule. For this purpose, we used three types of models with the DNA, all assuming a at geometry (2D), each built by a sequence of quasiperiodic (Fibonacci and / or Rudin-Shapiro) and a sequence of natural DNA, part of the human chromosome Ch22. The first two models have two types of components that are the nitrogenous bases (guanine G, cytosine C, adenine A and thymine T) and a cluster sugar-phosphate (SP), while the third has only the nitrogenous bases. In the first model we calculate the density of states using the formalism of Dyson and transmittance for the time independent Schr odinger equation . In the second model we used the renormalizationprocedure for the profile of the transmittance and consequently the I (current) versus V (voltage). In the third model we calculate the density of states formalism by Dean and used the results together with the Fermi-Dirac statistics for the chemical potential and the quantum specific heat. Finally, we compare the physical properties found for the quasi-periodic sequences and those that use a portion of the genomic DNA sequence (Ch22).
Resumo:
One of the mechanisms responsible for the anomalous diffusion is the existence of long-range temporal correlations, for example, Fractional Brownian Motion and walk models according to Elephant memory and Alzheimer profiles, whereas in the latter two cases the walker can always "remember" of his first steps. The question to be elucidated, and the was the main motivation of our work, is if memory of the historic initial is condition for observation anomalous diffusion (in this case, superdiffusion). We give a conclusive answer, by studying a non-Markovian model in which the walkers memory of the past, at time t, is given by a Gaussian centered at time t=2 and standard deviation t which grows linearly as the walker ages. For large widths of we find that the model behaves similarly to the Elephant model; In the opposite limit (! 0), although the walker forget the early days, we observed similar results to the Alzheimer walk model, in particular the presence of amnestically induced persistence, characterized by certain log-periodic oscillations. We conclude that the memory of earlier times is not a necessary condition for the generating of superdiffusion nor the amnestically induced persistence and can appear even in profiles of memory that forgets the initial steps, like the Gausssian memory profile investigated here.
Resumo:
A possible approach to the cosmological coincidence problem is to allow dark matter and dark energy to interact with each other also nongravitationally. Two general classes of interaction were considered in this thesis, characterized by a constant interaction parameter ( or
Resumo:
This work aims to study the additive decisions, a type of juridical interpretation developed in foreign legal systems and which are known in Italy as adittive sentences. Thefore, this dissertation is based on theorical studies developed around the subject in Italy and Brazil. Considering the fact that the fundamental rights face a problem of implementation, being decreased its normative force when there are legislative partial omissions lacking constitutional justification creating privileges to certain individuals or social/economical groups over others, the method of additive interpretation according to the Constitution can be used in order to realize the principle of equality. In tax matters the subject is even more relevant in the way that it represents an important role in the economy. Partial legislative omissions can generate inequalities, favoring certain taxpayers in relation to others in similar legal situation. In these cases the privilege may have a negative impact on economic order restricting values related to the basis of market competition. On those occasions, Brazilian Judges and Courts must exercise their constitutional jurisdiction in order to expand the effects of the legislative omissions, based on the principle of equality by extending the standard to equal tax situations in order to maintain neutrality in taxation
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
The potential market of the metropolitan area of Salvador accounts for the estimated consumption of roughly 800 million horizontally perforated extruded clay bricks a year. The growing demand of consumers along with the competitiveness of the structural ceramic sector has driven forward a number of recent efforts and investments towards improving the quality of structural ceramics. In this scenario, the present study focused on sampling and evaluating the conformity of 8-hole horizontally perforated extruded clay bricks manufactured by different plants (A, B and C) in the metropolitan area of Salvador. In addition, representative clay and sandy-clay materials were collected from each plant and characterized by conventional physical, chemical and mineralogical techniques. Finally, experimental compositions designated as A, B and C, according to the source, were prepared by mixing different contents of the raw materials collected in the plants, fired at different temperatures and characterized. The results revealed a series of non conformities regarding ABNT guidelines. The characterization of raw materials revealed the presence of kaolinite and ilite in concentrations ranging from 64 to 90 wt.% along with free quartz (10 - 25%). The sandy-clay samples consisted basically of kaolinite. All raw materials depicted low contents of organics, amorphous constituents, alkaline oxides and feldspar. An analysis of the firing behavior of all different ceramic compositions revealed that the linear contraction of composition A was rather significant considering the temperature range evaluated, and it justifies the significant dimensional non conformity that was shown by bricks made with the ceramic A
Resumo:
The bio-oil obtained from the pyrolysis of biomass has appeared as inter-esting alternative to replace fossil fuels. The aim of this work is to evaluate the influence of temperature on the yield of products originating from the pyrolysis process of the powder obtained from the dried twigs of avelós (Euphorbia tirucalli), using a rotating cylinder reactor in laboratory scale. The biomass was treated and characterized by: CHNS, moisture, volatiles, fixed carbon and ashes, as well as evaluation of lignin, cellulose and hemicellulose, besides other instrumental techniques such as: FTIR, TG/DTG, DRX, FRX and MEV. The activation energy was evaluated in non-isothemichal mode with heating rates of 5 and 10 oC/min. The obtained results showed biomass as feedstock with potential for biofuel production, because presents a high organic matter content (78,3%) and fixed-carbon (7,11%). The activation energy required for the degradation of biomass ranged between 232,92 392,84 kJ/mol, in the temperature range studied and heating rate of 5 and 10°C/min. In the pyrolysis process, the influence of the reaction temperature was studied (350-520 ° C), keeping constant the other variables, such as, the flow rate of carrier gas, the centrifugal speed for the bio-oil condensationa, the biomass flow and the rotation of the reactor. The maximum yield of bio-oil was obtained in the temperature of 450°C. In this temperature, the results achieved where: content of bio-oil 8,12%; char 32,7%; non-condensed gas 35,4%; losts 23,8%; gross calorific value 3,43MJ/kg; pH 4,93 and viscosity 1,5cP. The chromatographic analysis of the bio-oil produced under these conditions shows mainly the presence of phenol (17,71%), methylciclopentenone (10,56%) and dimethylciclopentenone (7,76%)
Resumo:
The need for new sources of energy and the concern about the environment have pushed the search for renewable energy sources such as ethanol. The use of lignocellulosic biomass as substrate appears as an important alternative because of the abundance of this raw material and for it does not compete with food production. However, the process still meets difficulties of implementation, including the cost for production of enzymes that degrade cellulose to fermentable sugars. The aim of this study was to evaluate the behavior of the species of cactus pear Opuntia ficus indica and Nopalea cochenillifera, commonly found in northeastern Brazil, as raw materials for the production of: 1) cellulosic ethanol by simultaneous saccharification and fermentation (SSF) process, using two different strains of Saccharomyces cerevisiae (PE-2 and LNF CA-11), and 2) cellulolytic enzymes by semi-solid state fermentation (SSSF) using the filamentous fungus Penicillium chrysogenum. Before alcoholic fermentation process, the material was conditioned and pretreated by three different strategies: alkaline hydrogen peroxide, alkaline using NaOH and acid using H2SO4 followed by alkaline delignification with NaOH. Analysis of composition, crystallinity and enzymatic digestibility were carried out with the material before and after pretreatment. In addition, scanning electron microscopy images were used to compare qualitatively the material and observe the effects of pretreatments. An experimental design 2² with triplicate at the central point was used to evaluate the influence of temperature (30, 40 and 45 °C) and the initial charge of substrate (3, 4 and 5% cellulose) in the SSF process using the material obtained through the best condition and testing both strains of S. cerevisiae, one of them flocculent (LNF CA-11). For cellulase production, the filamentous fungus P. chrysogenum was tested with N. cochenillifera in the raw condition (without pretreatment) and pretrated hydrothermically, varying the pH of the fermentative medium (3, 5 and 7). The characterization of cactus pear resulted in 31.55% cellulose, 17.12% hemicellulose and 10.25% lignin for N. cochenillifera and 34.86% cellulose, 19.97% hemicellulose and 15.72% lignin for O. ficus indica. It has also been determined, to N. cochenillifera and O. ficus indica, the content of pectin (5.44% and 5.55% of calcium pectate, respectively), extractives (26.90% and 9.69%, respectively) and ashes (5.40% and 5.95%). Pretreatment using alkaline hydrogen peroxide resulted in the best cellulose recovery results (86.16% for N. cochenillifera and 93.59% for O. ficus indica) and delignification (48.79% and 23.84% for N. cochenillifera and O. ficus indica, respectively). This pretreatment was also the only one which did not increase the crystallinity index of the samples, in the case of O. ficus indica. However, when analyzing the enzymatic digestibility of cellulose, alkali pretreatment was the one which showed the best yields and therefore it was chosen for the tests in SSF. The experiments showed higher yield of conversion of cellulose to ethanol by PE-2 strain using the pretreated N. cochenillifera (93.81%) at 40 °C using 4% initial charge of cellulose. N. cochenillifera gave better yields than O. ficus indica and PE-2 strain showed better performance than CA-11. N. cochenillifera proved to be a substrate that can be used in the SSSF for enzymes production, reaching values of 1.00 U/g of CMCase and 0.85 FPU/g. The pretreatment was not effective to increase the enzymatic activity values
Resumo:
The bio-oil obtained from the pyrolysis of biomass has appeared as inter-esting alternative to replace fossil fuels. The aim of this work is to evaluate the influence of temperature on the yield of products originating from the pyrolysis process of the powder obtained from the dried twigs of avelós (Euphorbia tirucalli), using a rotating cylinder reactor in laboratory scale. The biomass was treated and characterized by: CHNS, moisture, volatiles, fixed carbon and ashes, as well as evaluation of lignin, cellulose and hemicellulose, besides other instrumental techniques such as: FTIR, TG/DTG, DRX, FRX and MEV. The activation energy was evaluated in non-isothemichal mode with heating rates of 5 and 10 oC/min. The obtained results showed biomass as feedstock with potential for biofuel production, because presents a high organic matter content (78,3%) and fixed-carbon (7,11%). The activation energy required for the degradation of biomass ranged between 232,92 392,84 kJ/mol, in the temperature range studied and heating rate of 5 and 10°C/min. In the pyrolysis process, the influence of the reaction temperature was studied (350-520 ° C), keeping constant the other variables, such as, the flow rate of carrier gas, the centrifugal speed for the bio-oil condensationa, the biomass flow and the rotation of the reactor. The maximum yield of bio-oil was obtained in the temperature of 450°C. In this temperature, the results achieved where: content of bio-oil 8,12%; char 32,7%; non-condensed gas 35,4%; losts 23,8%; gross calorific value 3,43MJ/kg; pH 4,93 and viscosity 1,5cP. The chromatographic analysis of the bio-oil produced under these conditions shows mainly the presence of phenol (17,71%), methylciclopentenone (10,56%) and dimethylciclopentenone (7,76%)
Resumo:
In wastewater treatment, activated sludge systems have been a technology widely applied as secondary treatment. During this step, which has a strong biological aspect, it is necessary to introduce oxygen supply for the maintenance of metabolic activity of the bacteria through the aerators. Aeration devices are responsible for most of the energy consumption in this stage. In this background, the influence of three aeration intensities (atmospheric air flow 3.5, 7.0 and 10.5 L.min-1) and the concentration of dissolved oxygen (DO) on the dimension of activated sludge flocs as well as on the efficiency of organic matter removal were assessed using a traditional activated sludge system which was fed with synthetic domestic wastewater. Samples were taken weekly from the three units that make up the system feed, aeration and storage tank in order to verify the Chemical Oxygen Demand (COD). It was established the process efficiency through a comparison between the initial and final COD. Besides the parameters already mentioned, this monitoring work on activated sludge batch system was also observed by Mixed Liquor Suspend Solids (MLSS), Volatile Suspend Solids (VSS), pH and temperature measures. The results have showed a maximum removal efficiency around 75% in the first aeration sequence and approximately 85% for the second and third one. For the first aeration, the DO concentration remained higher than 3.0 mg.L-1 and a diameter range from 10 to 60 μm was observed. In the second e third sequence, the DO concentration remained higher than 4.0 mg.L-1 with a diameter range of 10 until 200 μm. Although the sequence 1 and 2 have presented similar performances for organic matter removal, the sequence 2 promoted a regular floc size distribution and with lower values of Sludge Volumetric Index (SVI) meaning a better flocculating ability. In addition, the results reaffirmed what the literature has reported: higher DO concentrations produce flocs with greater dimensions
Resumo:
Petroleum Refinery wastewaters (PRW) have hart-to-degrade compounds, such as: phenols, ammonia, cyanides, sulfides, oils and greases and the mono and polynuclear aromatic hydrocarbons: benzene, toluene and xylene (BTX), acenaphthene, nitrobenzene and naphtalene. It is known that the microrganisms activity can be reduced in the presence of certain substances, adversely affecting the biological process of wastewater treatment. This research was instigated due the small number of studies regarding to this specific topic in the avaiable literature. This body of work ims to evaluate the effect of toxic substances on the biodegradability of the organic material found in PRW. Glucose was chosen as the model substrate due to its biodegradable nature. This study was divided into three parts: i) a survey of recalcitants compounds and the removal of phenol by using both biological and photochemical-biological processes; ii) biomass aclimation and iii) evaluation of the inhibitory effect certain compounds have on glucose biodegradation. The phenol degradation experiments were carried out in an activity sludge system and in a photochemical reactor. The results showed the photochemical-biological process to be more effective on phenol degradation, suggesting the superioruty of a combined photochemical-biological treatment when compared with a simple biological process for phenol removal from industry wastewaters. For the acclimation step, was used an activated sludge from industrial wastewaters. A rapid biomass aclimation to a synthetic solution composed of the main inhibitory compouns fpund in a PRW was obtained using the following operation condition: (pH = 7,0; DO ≥ 2,0 mg/L; RS = 20 days e qH = 31,2 and 20,4 hours), The last part was consisted of using respirometry evaluation toxicity effects of selected compounds over oxygen uptake rate to adaptated and non adaptated biomass in the presence of inhibitory compounds. The adaptated sludge showed greater degration capacity, with lower sensibility to toxic effects. The respirometry has proved to be very practical, as the techiniques used were simple and rapid, such as: Chemical Oxygen Demand (COD), Dissolved Oxygen (DO), and Volatile Suspended Solids (VSS). Using the latter it is possible to perform sludge selection to beggingthe process; thus allowing its use for aerobic treatment system`s behacior prediction
Resumo:
Waste stabilization ponds (WSP) have been widely used for sewage treatment in hot climate regions because they are economic and environmentally sustainable. In the present study a WSP complex comprising a primary facultative pond (PFP) followed by two maturation ponds (MP-1 and MP-2) was studied, in the city of Natal-RN. The main objective was to study the bio-degradability of organic matter through the determination of the kinetic constant k throughout the system. The work was carried out in two phases. In the first, the variability in BOD, COD and TOC concentrations and an analysis of the relations between these parameters, in the influent raw sewage, pond effluents and in specific areas inside the ponds was studied. In the second stage, the decay rate for organic matter (k) was determined throughout the system based on BOD tests on the influent sewage, pond effluents and water column samples taken from fixed locations within the ponds, using the mathematical methods of Least Squares and the Thomas equation. Subsequently k was estimated as a function of a hydrodynamic model determined from the dispersion number (d), using empirical methods and a Partial Hydrodynamic Evaluation (PHE), obtained from tracer studies in a section of the primary facultative pond corresponding to 10% of its total length. The concentrations of biodegradable organic matter, measured as BOD and COD, gradually reduced through the series of ponds, giving overall removal efficiencies of 71.95% for BOD and of 52.45% for COD. Determining the values for k, in the influent and effluent samples of the ponds using the mathematical method of Least Squares, gave the following values respectively: primary facultative pond (0,23 day-1 and 0,09 day-1), maturation 1 (0,04 day-1 and 0,03 day-1) and maturation 2 (0,03 day-1 and 0,08 day-1). When using the Thomas method, the values of k in the influents and effluents of the ponds were: primary facultative pond (0,17 day-1 and 0,07 day-1), maturation 1 (0,02 day-1 and 0,01 day-1) and maturation 2 (0,01 day-1 and 0,02 day-1). From the Partial Hydrodynamic Evaluation, in the first section of the facultative pond corresponding to 10% of its total length, it can be concluded from the dispersion number obtained of d = 0.04, that the hydraulic regime is one of dispersed flow with a kinetic constant value of 0.20 day-1