209 resultados para OCEANOGRAFÍA FISICA
Resumo:
The study and fabrication of nanostructured systems composed of magnetic materials has been an area of great scientific and technological interest. Soft magnetic materials, in particular, have had great importance in the development of magnetic devices. Among such materials we highlight the use of alloys of Ni and Fe, known as Permalloy. We present measurement results of structural characterization and magnetic films in Permalloy (Ni81Fe19), known to be a material with high magnetic permeability, low coercivity and small magneto- crystalline anisotropy, deposited on MgO (100) substrates. The Magnetron Sputtering technique was used to obtain the samples with thicknesses varying between 9 150 nm. The techniques of X- ray Diffraction at high and low angle were employed to confirm the crystallographic orientation and thickness of the films. In order to investigate the magnetic properties of the films the techniques of Vibrant Sample Magnetometry (VSM), Ferromagnetic Resonance (FMR) and Magnetoimpedance were used. The magnetization curves revealed the presence of anisotropy for the films of Py/MgO (100), where it was found that there are three distinct axis - an easy-axis for θH = 0°, a hard-axis for θH = 45° and an intermediate for θH = 90°. The results of the FMR and Magnetoimpedance techniques confirm that there are three distinct axes, that is, there is a type C2 symmetry. Then we propose, for these results, the interpretation of the magnetic anisotropy of Py/MgO ( 100 ) is of type simple C2, ie a cubic magnetic anisotropy type ( 110 )
Resumo:
Iron nitrite films, with hundred of nanometers thick, were deposited using the Cathodic cage plasma nitriding method, with a N2/H2 plasma, over a common glass substract. The structure, surface morphology and magnetic properties were investigated using X-ray diffractometry (XRD), atomic force microscopy (AFM) and vibrating sample magnetometer (VSM). XRD shows the formation of γ FeN phase and a combination of ζFe2N + ɛFe3N phases. The film s saturation magnetization and coercivity depends on morphology, composition, grain size and treatment temperature. Temperature raising from 250 ºC to 350 ºC were followed by an increase in saturation magnetization and film s surface coercivity on the parallel direction in relative proportion. This fact can be attributed to the grain sizes and to the different phases formed, since iron rich fases, like the ɛFe3N phase, emerges more frequently on more elevated treatment s temperature. Using this new and reasonably low cost method, it was possible to deposit films with both good adhesion and good magnetic properties, with wide application in magnetic devices
Resumo:
The magnetic order of bylayers composed by a ferromagnetic film (F) coupled with an antiferromagnetic film (AF) is studied. Piles of coupled monolayers describe the films and the interfilm coupling is described by an exchange interaction between the magnetic moments at the interface. The F has a cubic anisotropy while the AF has a uniaxial anisotropy. We analyze the effects of an external do magnetic field applied parallel to the interface. We consider the intralayer coupling is strong enough to keep parallel all moments of the monolayer an then they are described by one vector proportional to the magnetization of the layer. The interlayer coupling is represented by an exchange interaction between these vectors. The magnetic energy of the system is the sum of the exchange. Anisotropy and Zeeman energies and the equilibrium configuration is one that gives the absolute minimum of the total energy. The magnetization of the system is calculated and the influence of the external do field combined with the interfilm coupling and the unidirectional anisotropy is studied. Special attention is given to the region near of the transition fields. The torque equation is used to study dynamical behavior of these systems. We consider small oscillations around the equilibrium position and we negleet nonlinear terms to obtain the natural frequencies of the system. The dependence of the frequencies with the external do field and their behavior in the phase transition region is analized
Resumo:
Many astronomical observations in the last few years are strongly suggesting that the current Universe is spatially flat and dominated by an exotic form of energy. This unknown energy density accelerates the universe expansion and corresponds to around 70% of its total density being usually called Dark Energy or Quintessence. One of the candidates to dark energy is the so-called cosmological constant (Λ) which is usually interpreted as the vacuum energy density. However, in order to remove the discrepancy between the expected and observed values for the vacuum energy density some current models assume that the vacuum energy is continuously decaying due to its possible coupling with the others matter fields existing in the Cosmos. In this dissertation, starting from concepts and basis of General Relativity Theory, we study the Cosmic Microwave Background Radiation with emphasis on the anisotropies or temperature fluctuations which are one of the oldest relic of the observed Universe. The anisotropies are deduced by integrating the Boltzmann equation in order to explain qualitatively the generation and c1assification of the fluctuations. In the following we construct explicitly the angular power spectrum of anisotropies for cosmologies with cosmological constant (ΛCDM) and a decaying vacuum energy density (Λ(t)CDM). Finally, with basis on the quadrupole moment measured by the WMAP experiment, we estimate the decaying rates of the vacuum energy density in matter and in radiation for a smoothly and non-smoothly decaying vacuum
Resumo:
In this work we analyse the implications of using a power law distribution of vertice's quality in the growth dynamics of a network studied by Bianconi anel Barabási. In particular, we start studying the random networks which characterize or are related to some real situations, for instance the tide movement. In this context of complex networks, we investigate several real networks, as well as we define some important concepts in the network studies. Furthermore, we present the first scale-free network model, which was proposed by Barabási et al., and a modified model studied by Bianconi and Barabási, where now the preferential attachment incorporates the different ability (fitness) of the nodes to compete for links. At the end, our results, discussions and conclusions are presented
Resumo:
A linear chain do not present phase transition at any finite temperature in a one dimensional system considering only first neighbors interaction. An example is the Ising ferromagnet in which his critical temperature lies at zero degree. Analogously, in percolation like disordered geometrical systems, the critical point is given by the critical probability equals to one. However, this situation can be drastically changed if we consider long-range bonds, replacing the probability distribution by a function like . In this kind of distribution the limit α → ∞ corresponds to the usual first neighbor bond case. In the other hand α = 0 corresponds to the well know "molecular field" situation. In this thesis we studied the behavior of Pc as a function of a to the bond percolation specially in d = 1. Our goal was to check a conjecture proposed by Tsallis in the context of his Generalized Statistics (a generalization to the Boltzmann-Gibbs statistics). By this conjecture, the scaling laws that depend with the size of the system N, vary in fact with the quantitie
Resumo:
The research behind this master dissertation started with the installation of a DC sputtering system, from its first stage, the adaptation of a refrigerating system, passing by the introduction of a heating system for the chamber using a thermal belt, until the deposition of a series of Fe/MgO(100) single crystal nanometric film samples. The deposition rates of some materials such as Fe, Py and Cu were investigated through an Atomic Force Microscope (AFM). For the single crystal samples, five of them have the same growth parameters and a thickness of 250Å, except for the temperature, which varies from fifty degrees from one to another, from 100ºC to 300ºC. Three other samples also have the same deposition parameters and a temperature of 300ºC, but with thickness of 62,5Å, 150Å, and 250Å. Magneto-optical Kerr Effect (MOKE) of the magnetic curves measurements and Ferromagnetic Resonance (FMR) were made to in order to study the influence of the temperature and thickness on the sample s magnetic properties. In the present dissertation we discuss such techniques, and the experimental results are interpreted using phenomenological models, by simulation, and discussed from a physical point of view, taking into account the system s free magnetic energy terms. The results show the growth of the cubic anisotropy field (Hac) as the sample s deposition temperature increases, presenting an asymptotic behavior, similar to the characteristic charging curve of a capacitor in a RC circuit. A similar behavior was also observed for the Hac due to the increase in the samples thicknesses. The 250˚A sample, growth at 300°C, presented a Hac field close to the Fe bulk value
Resumo:
In this work we present a theoretical study about the properties of magnetic polaritons in superlattices arranged in a periodic and quasiperiodic fashíons. In the periodic superlattice, in order to describe the behavior of the bulk and surface modes an effective medium approach, was used that simplify enormously the algebra involved. The quasi-periodic superlattice was described by a suitable theoretical model based on a transfer-matrix treatment, to derive the polariton's dispersion relation, using Maxwell's equations (including effect of retardation). Here, we find a fractal spectra characterized by a power law for the distribution of the energy bandwidths. The localization and scaling behavior of the quasiperiodic structure were studied for a geometry where the wave vector and the external applied magnetic field are in the same plane (Voigt geometry). Numerical results are presented for the ferromagnet Fe and for the metamagnets FeBr2 and FeCl2
Resumo:
This study tried to know the social representation of dentists surgeons about the Family Health Program (FHP). Where used as methodological instruments a semi-structured interview and direct observation of work process in tive towns that are part of the metropolis region ofNatal city. During the interview some aspects where broached, such as the reasons of dentists surgeons join the FHP, what are the implications ofthe introduction of this program in the everyday practice, what kind of activities are they practicing and what are those professional missing the most in the FHP. In the direct observation where take in account some aspects related to the physic structure of health units, its service organization and demand, relationship amongst dentist and other member of the team, and about patient receptiveness, when they arrives at health unit. This study also identifY the researches subject showing their age, sex, for how they are graduates, what are them specialty and for how long they work for the FHP. The data had been analyzed through the analysis of content of Bardin5. The dentists depict the FHP for the change in assistance model through the preventive proposal of social work that makes possible to work with an ample concept of health. However what makes the FHP more attractive to dentists is the salary questiono The creation of bonds whit the community and the work whit groups and in team had been the main occurred changes in the daily one of the pratices ones of these professionals. The principal activities executed for these professionals inside of the new strategy of assistance in oral health are the carried trough preventive activities achieved in health units and social area. To them, the absence of institutional support and the employment of only one dentist for each team it is one the main point of strangling. There is no doubt that FHP is new strategy and that it is need a better integration amongst the professional, the institution
Resumo:
The aim of this study is to investigate the eco-environmental vulnerability, its changes, and its causes to develop a management system for application of eco-environmental vulnerability and risk assessment in the Apodi-Mossory estuary, Northeast Brazil. This analysis is focused on the interference of the landscape conditions, and its changes, due to the following factors: the oil and natural gas industry, tropical fruits industry, shrimp farms, marine salt industry, occupation of the sensitive areas; demand for land, vegetation degradation, siltation in rivers, severe flooding, sea level rise (SLR), coastal dynamics, low and flat topography, high ecological value and tourism in the region and the rapid growth of urbanization. Conventional and remote sensing data were analyzed using modeling techniques based on ArcGIS, ER-Mapper, ERDAS Imagine and ENVI software. Digital images were initially processed by Principal Component Analysis and transformation of the maximum fraction of noise, and then all bands were normalized to reduce errors caused by bands of different sizes. They were integrated in a Geographic Information System analysis to detect changes, to generate digital elevation models, geomorphic indices and other variables of the study area. A three band color combination of multispectral bands was used to monitor changes of land and vegetation cover from 1986 to 2009. This task also included the analysis of various secondary data, such as field data, socioeconomic data, environmental data and prospects growth. The main objective of this study was to improve our understanding of eco-environmental vulnerability and risk assessment; it´s causes basically show the intensity, its distribution and human-environment effect on the ecosystem, and identify the high and low sensitive areas and area of inundation due to future SLR, and the loss of land due to coastal erosion in the Apodi-Mossoró estuary in order to establish a strategy for sustainable land use. The developed model includes some basic factors such as geology, geomorphology, soils, land use / land cover, vegetation cover, slope, topography and hydrology. The numerical results indicate that 9.86% of total study area was under very high vulnerability, 29.12% high vulnerability, 52.90% moderate vulnerability and 2.23% were in the category of very low vulnerability. The analysis indicates that 216.1 km² and 362.8 km² area flooded on 1m and 10m in sea levels respectively. The sectors most affected were residential, industrial and recreational areas, agricultural land, and ecosystems of high environmental sensitivity. The results showed that changes in eco-environmental vulnerability have a significant impact on the sustainable development of the RN state, since the indicator is a function of sensitivity, exposure and status in relation to a level of damage. The model were presented as a tool to assist in indexing vulnerability in order to optimize actions and assess the implications of decisions makers and policies regarding the management of coastal and estuarine areas. In this context aspects such as population growth, degradation of vegetation, land use / land cover, amount and type of industrialization, SLR and government policies for environmental protection were considered the main factors that affect the eco-environmental changes over the last three decades in the Apodi-Mossoró estuary.
Resumo:
Neste trabalho estudamos o comportamento das estrelas pertencentes a sistemas planetários no que diz respeito às suas características infravermelho e à distribuição espectral de energia (SED). Nosso estudo tem como base uma análise detalhada do comportamento da emissão no infravermelho de 48 estrelas com planetas, classificadas como estrelas da seqüência principal, subgigantes ou gigantes. Foram analisados dados de fotometria infravermelho nas bandas 12, 25 e 60µm do catálogo de fontes IRAS puntiformes (IPSC) e nas bandas JHK do projeto 2 Micron All Sky Survey (2MASS). A partir do cálculo da discrepância na posição de apontamento da fonte e do cálculo do índice de cor, selecionamos e localizamos os objetos no diagrama de cor-cor do IRAS. Este diagrama permite-nos identificar possíveis objetos detentores de disco de poeira. Fizemos também uma análise da distribuição espectral de energia onde observamos também traços de excesso de fluxo no infravermelho, com isso, confirmarmos a presença do disco de poeira nos objetos identificados no diagrama de cor. Apesar da atual amostra de estrelas com planetas incluir apenas um subconjunto de estrelas com planetas detectadas na vizinhança solar, a presente análise do fluxo infravermelho nesses objetos oferecem uma possibilidade única de estudar as características infravermelho das estrelas pertencentes aos sistemas planetários extra-solar. Neste contexto, nosso estudo aponta resultados interessantes, entre outros destacamos o fato de algumas estrelas com planetas apresentarem um peculiar fluxo IRAS [60-25], indicando a co-existência de poeira juntamente com os planetas destes sistemas extra solar
Resumo:
In this work we study, for two different growth directions, multilayers of nanometric magnetic metallic lms grown, using Fibonacci sequences, in such a way that the thickness of the non-magnetic spacer may vary from a pair of lms to another. We applied a phenomenological theory that uses the magnetic energy to describe the behavior of the system. After we found numerically the global minimum of the total energy, we used the equilibrium angles to obtain magnetization and magnetoresistance curves. Next, we solved the equation of motion of the multilayers to nd the dispersion relation for the system. The results show that, when spacers are used with thickness so that the biquadratic coupling is strong in comparison to the bilinear one, non usual behaviors for both magnetization and magnetoresistance are observed. For example, a dependence on the parity of the Fibonacci generation utilized for constructing the system, a low magnetoresistance step in low external magnetic fields and regions that show high sensibility to small variations of the applied field. Those behaviors are not present in quasiperiodic magnetic multilayers with constant spacer thickness
Resumo:
We report a theoretical investigation of thermal hysteresis in magnetic nanoelements. Thermal hysteresis originates in the existence of meta-stable states in temperature intervals which may be tuned by small values of the external magnetic field, and are controlled by the systems geometric dimensions as well as the composition. Two systems have been investigated. The first system is a trilayer consisting of one antiferromagnetic MnF2 film, exchange coupled with two Fe lms. At low temperatures the ferromagnetic layers are oriented in opposite directions. By heating in the presence of an external magnetic field, the Zeeman energy induces a gradual orientation of the ferromagnets with the external field and the nucleation of spin- op-like states in the antiferromagnetic layer, leading eventually, in temperatures close to the Neel temperature, to full alignment of the ferromagnetic films and the formation of frustrated exchange bonds in the center of the antiferromagnetic layer. By cooling down to low temperatures, the system follows a different sequence of states, due to the anisotropy barriers of both materials. The width of the thermal hysteresis loop depends on the thicknesses of the FM and AFM layers as well as on the strength of the external field. The second system consists in Fe and Permalloy ferromagnetic nanoelements exchange coupled to a NiO uncompensated substrate. In this case the thermal hysteresis originates in the modifications of the intrinsic magnetic
Resumo:
In the present work, we have analyzed the behavior of the chromospheric activity of stars with planets, as a function of different planetary parameters, searching for possible effects of planets on the chromosphere of the hosting star. For this study we have selected a sample of 73 main sequence stars with planets, of spectral types F, G and K. Our analysis shows that among stars with planets presenting semi-major axis smaller than 0.15 AU, a few ones present enhanced CaII emission flux, paralleling recent results found in the literature for coronal X-ray flux. Nevertheless, in contrast to Kashyap et al. (2008), who claim that enhanced X-ray flux in stars with planets is associated to massive close-in planetary companions, we suggest that such an aspect, at least in the context of CaII emission flux, is rather an effect of stellar sample selection. We have also studied the behavior of the CaII emission as a function of orbital parameters such as orbital period and eccentricity, and no clear trend was found, reinforcing our present suggestion that enhanced chromospheric activity in stars with planets is an intrinsic stellar phenomenon
Resumo:
In this dissertation, after a brief review on the Einstein s General Relativity Theory and its application to the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological models, we present and discuss the alternative theories of gravity dubbed f(R) gravity. These theories come about when one substitute in the Einstein-Hilbert action the Ricci curvature R by some well behaved nonlinear function f(R). They provide an alternative way to explain the current cosmic acceleration with no need of invoking neither a dark energy component, nor the existence of extra spatial dimensions. In dealing with f(R) gravity, two different variational approaches may be followed, namely the metric and the Palatini formalisms, which lead to very different equations of motion. We briefly describe the metric formalism and then concentrate on the Palatini variational approach to the gravity action. We make a systematic and detailed derivation of the field equations for Palatini f(R) gravity, which generalize the Einsteins equations of General Relativity, and obtain also the generalized Friedmann equations, which can be used for cosmological tests. As an example, using recent compilations of type Ia Supernovae observations, we show how the f(R) = R − fi/Rn class of gravity theories explain the recent observed acceleration of the universe by placing reasonable constraints on the free parameters fi and n. We also examine the question as to whether Palatini f(R) gravity theories permit space-times in which causality, a fundamental issue in any physical theory [22], is violated. As is well known, in General Relativity there are solutions to the viii field equations that have causal anomalies in the form of closed time-like curves, the renowned Gödel model being the best known example of such a solution. Here we show that every perfect-fluid Gödel-type solution of Palatini f(R) gravity with density and pressure p that satisfy the weak energy condition + p 0 is necessarily isometric to the Gödel geometry, demonstrating, therefore, that these theories present causal anomalies in the form of closed time-like curves. This result extends a theorem on Gödel-type models to the framework of Palatini f(R) gravity theory. We derive an expression for a critical radius rc (beyond which causality is violated) for an arbitrary Palatini f(R) theory. The expression makes apparent that the violation of causality depends on the form of f(R) and on the matter content components. We concretely examine the Gödel-type perfect-fluid solutions in the f(R) = R−fi/Rn class of Palatini gravity theories, and show that for positive matter density and for fi and n in the range permitted by the observations, these theories do not admit the Gödel geometry as a perfect-fluid solution of its field equations. In this sense, f(R) gravity theory remedies the causal pathology in the form of closed timelike curves which is allowed in General Relativity. We also examine the violation of causality of Gödel-type by considering a single scalar field as the matter content. For this source, we show that Palatini f(R) gravity gives rise to a unique Gödeltype solution with no violation of causality. Finally, we show that by combining a perfect fluid plus a scalar field as sources of Gödel-type geometries, we obtain both solutions in the form of closed time-like curves, as well as solutions with no violation of causality