284 resultados para Cimentação de Poço de Petróleo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The materials engineering includes processes and products involving several areas of engineering, allowing them to prepare materials that fulfill the needs of various new products. In this case, this work aims to study a system composed of cement paste and geopolymers, which can contribute to solving an engineering problem that directly involves the exploitation of oil wells subject to loss of circulation. To correct it, has been already proposed the use of granular materials, fibers, reducing the drilling fluid or cement paste density and even surface and downhole mixed systems. In this work, we proposed the development of a slurry mixed system, the first was a cement-based slurry and the second a geopolymer-based slurry. The cement-based slurry was formulated with low density and extenders, 12.0 ppg (1.438 g/cm ³), showing great thixotropic characteristics. It was added nano silica at concentrations of 0.5, 1.0 and 1.5 gps (66.88, 133.76 and 200.64 L/m3) and CaCl2 at concentrations of 0.5, 1, 0 and 1.5%. The second system is a geopolymer-based paste formulated from molar ratios of 3.5 (nSiO2/nAl2O3), 0.27 (nK2O/nSiO2), 1.07 (nK2O/nAl2O3) and 13.99 (nH2O/nK2O). Finally, we performed a mixture of these two systems, for their application for correction of circulation lost. To characterize the raw materials, XRD, XRF, FTIR analysis and titration were performed. The both systems were characterized in tests based on API RP10B. Compressive strength tests were conducted after curing for 24 hours, 7 and 28 days at 58 °C on the cement-based system and the geopolymer-based system. From the mixtures have been performed mixability tests and micro structural characterizations (XRD, SEM and TG). The results showed that the nano silica, when combined with CaCl2 modified the rheological properties of the cement slurry and from the concentration of 1.5 gpc (200.64 L / m³) it was possible to obtain stable systems. The system mixture caused a change in the microstructure of the material by favoring the rate of geopolymer formation to hinder the C3S phase hydration, thus, the production of CSH phases and Portlandite were harmed. Through the mixability tests it can be concluded that the system, due to reduced setting time of the mixture, can be applied to plug lost circulation zones when mixed downhole

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-ceramic interfaces are present in tricone drill bits with hard ceramic inserts for oil well drilling operations. The combination of actions of cutting, crushing and breaking up of rocks results in the degradation of tricone drill bits by wear, total or partial rupture of the drill bit body or the ceramic inserts, thermal shock and corrosion. Also the improper pressfitting of the ceramic inserts on the bit body may cause its total detachment, and promote serious damages to the drill bit. The improvement on the production process of metal-ceramic interfaces can eliminate or minimize some of above-mentioned failures presented in tricone drill bits, optimizing their lifetime and so reducing drilling metric cost. Brazing is a widely established technique to join metal-ceramic materials, and may be an excellent alternative to the common mechanical press fitting process of hard ceramic inserts on the steel bit body for tricone drill bit. Wetting phenomena plays an essential role in the production of metal/ceramic interfaces when a liquid phase is present in the process. In this work, 72Silver-28Copper eutectic based brazing alloys were melted onto zirconia, silicon nitride and tungsten carbide/Co substrates under high vacuum. Contact angle evolution was measured and graphically plotted, and the interfaces produced were analysed by SEM-EDX. The AgCu eutectic alloy did not wet any ceramic substrates, showing high contact angles, and so without chemical interaction between the materials. Better results were found for the systemns containing 3%wt of titanium in the AgCu alloy. The presence os titanium as a solute in the alloy produces wettable cand termodinamically stable compounds, increasing the ceramics wetting beahviour

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oil production in Brazil has been increasing each year. Consequently, increasing volumes of water produced are generated with large quantities of contaminants, which brings many problems in disposing of these waters. The concern that the concentrations of contaminants in water produced meet existing laws for disposal of effluents, has been extremely important for the development of different techniques for treatment of water produced. The study of clay minerals as adsorbents of organic contaminants has grown considerably so in order to combine the low cost with the efficiency of environmental preservation and health issues. Thus, this study aims to understand the characteristics of vermiculite clay, sodium bentonite, calcium bentonite and diatomite and evaluate their performance as adsorbents for phenol in the water produced. Through adsorption isotherms it was possible to observe the behavior of these adsorptive clay and diatomite for adsorption of phenol, the main phenolic compound found in water produced. Different concentrations of synthetic solutions of phenol were put in touch with these adsorbents under same conditions of agitation and temperature. The adsorbents were composted adsorptive favorable, but the vermiculite and diatomite showed little capacity for absorption, being suggested for absorbs small concentrations of phenol in the balance isothermal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the new discoveries of oil and gas, the exploration of fields in various geological basins, imports of other oils and the development of alternative fuels, more and more research labs have evaluated and characterized new types of petroleum and derivatives. Therefore the investment in new techniques and equipment in the samples analysis to determine their physical and chemical properties, their composition, possible contaminants, especification of products, among others, have multiplied in last years, so development of techniques for rapid and efficient characterization is extremely important for a better economic recovery of oil. Based on this context, this work has two main objectives. The first one is to characterize the oil by thermogravimetry coupled with mass spectrometry (TG-MS), and correlate these results with from other types of characterizations data previously informed. The second is to use the technique to develop a methodology to obtain the curve of evaluation of hydrogen sulfide gas in oil. Thus, four samples were analyzed by TG-MS, and X-ray fluorescence spectrometry (XRF). TG results can be used to indicate the nature of oil, its tendency in coke formation, temperatures of distillation and cracking, and other features. It was observed in MS evaluations the behavior of oil main compounds with temperature, the points where the volatilized certain fractions and the evaluation gas analysis of sulfide hydrogen that is compared with the evaluation curve obtained by Petrobras with another methodology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep bed filtration occurs in several industrial and environmental processes like water filtration and soil contamination. In petroleum industry, deep bed filtration occurs near to injection wells during water injection, causing injectivity reduction. It also takes place during well drilling, sand production control, produced water disposal in aquifers, etc. The particle capture in porous media can be caused by different physical mechanisms (size exclusion, electrical forces, bridging, gravity, etc). A statistical model for filtration in porous media is proposed and analytical solutions for suspended and retained particles are derived. The model, which incorporates particle retention probability, is compared with the classical deep bed filtration model allowing a physical interpretation of the filtration coefficients. Comparison of the obtained analytical solutions for the proposed model with the classical model solutions allows concluding that the larger the particle capture probability, the larger the discrepancy between the proposed and the classical models

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Until the early 90s, the simulation of fluid flow in oil reservoir basically used the numerical technique of finite differences. Since then, there was a big development in simulation technology based on streamlines, so that nowadays it is being used in several cases and it can represent the physical mechanisms that influence the fluid flow, such as compressibility, capillarity and gravitational segregation. Streamline-based flow simulation is a tool that can help enough in waterflood project management, because it provides important information not available through traditional simulation of finite differences and shows, in a direct way, the influence between injector well and producer well. This work presents the application of a methodology published in literature for optimizing water injection projects in modeling of a Brazilian Potiguar Basin reservoir that has a large number of wells. This methodology considers changes of injection well rates over time, based on information available through streamline simulation. This methodology reduces injection rates in wells of lower efficiency and increases injection rates in more efficient wells. In the proposed model, the methodology was effective. The optimized alternatives presented higher oil recovery associated with a lower water injection volume. This shows better efficiency and, consequently, reduction in costs. Considering the wide use of the water injection in oil fields, the positive outcome of the modeling is important, because it shows a case study of increasing of oil recovery achieved simply through better distribution of water injection rates

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study we elaborated algorithms by using concepts from percolation theory which analyze the connectivity conditions in geological models of petroleum reservoirs. From the petrophysical parameters such as permeability, porosity, transmittivity and others, which may be generated by any statistical process, it is possible to determine the portion of the model with more connected cells, what the interconnected wells are, and the critical path between injector and source wells. This allows to classify the reservoir according to the modeled petrophysical parameters. This also make it possible to determine the percentage of the reservoir to which each well is connected. Generally, the connected regions and the respective minima and/or maxima in the occurrence of the petrophysical parameters studied constitute a good manner to characterize a reservoir volumetrically. Therefore, the algorithms allow to optimize the positioning of wells, offering a preview of the general conditions of the given model s connectivity. The intent is not to evaluate geological models, but to show how to interpret the deposits, how their petrophysical characteristics are spatially distributed, and how the connections between the several parts of the system are resolved, showing their critical paths and backbones. The execution of these algorithms allows us to know the properties of the model s connectivity before the work on reservoir flux simulation is started

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The artificial lifting of oil is needed when the pressure of the reservoir is not high enough so that the fluid contained in it can reach the surface spontaneously. Thus the increase in energy supplies artificial or additional fluid integral to the well to come to the surface. The rod pump is the artificial lift method most used in the world and the dynamometer card (surface and down-hole) is the best tool for the analysis of a well equipped with such method. A computational method using Artificial Neural Networks MLP was and developed using pre-established patterns, based on its geometry, the downhole card are used for training the network and then the network provides the knowledge for classification of new cards, allows the fails diagnose in the system and operation conditions of the lifting system. These routines could be integrated to a supervisory system that collects the cards to be analyzed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The petrochemical industry has as objective obtain, from crude oil, some products with a higher commercial value and a bigger industrial utility for energy purposes. These industrial processes are complex, commonly operating with large production volume and in restricted operation conditions. The operation control in optimized and stable conditions is important to keep obtained products quality and the industrial plant safety. Currently, industrial network has been attained evidence when there is a need to make the process control in a distributed way. The Foundation Fieldbus protocol for industrial network, for its interoperability feature and its user interface organized in simple configuration blocks, has great notoriety among industrial automation network group. This present work puts together some benefits brought by industrial network technology to petrochemical industrial processes inherent complexity. For this, a dynamic reconfiguration system for intelligent strategies (artificial neural networks, for example) based on the protocol user application layer is proposed which might allow different applications use in a particular process, without operators intervention and with necessary guarantees for the proper plant functioning

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this study is to apply recently developed methods of physical-statistic to time series analysis, particularly in electrical induction s profiles of oil wells data, to study the petrophysical similarity of those wells in a spatial distribution. For this, we used the DFA method in order to know if we can or not use this technique to characterize spatially the fields. After obtain the DFA values for all wells, we applied clustering analysis. To do these tests we used the non-hierarchical method called K-means. Usually based on the Euclidean distance, the K-means consists in dividing the elements of a data matrix N in k groups, so that the similarities among elements belonging to different groups are the smallest possible. In order to test if a dataset generated by the K-means method or randomly generated datasets form spatial patterns, we created the parameter Ω (index of neighborhood). High values of Ω reveals more aggregated data and low values of Ω show scattered data or data without spatial correlation. Thus we concluded that data from the DFA of 54 wells are grouped and can be used to characterize spatial fields. Applying contour level technique we confirm the results obtained by the K-means, confirming that DFA is effective to perform spatial analysis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of reservoir engineering is to manage fields of oil production in order to maximize the production of hydrocarbons according to economic and physical restrictions. The deciding of a production strategy is a complex activity involving several variables in the process. Thus, a smart system, which assists in the optimization of the options for developing of the field, is very useful in day-to-day of reservoir engineers. This paper proposes the development of an intelligent system to aid decision making, regarding the optimization of strategies of production in oil fields. The intelligence of this system will be implemented through the use of the technique of reinforcement learning, which is presented as a powerful tool in problems of multi-stage decision. The proposed system will allow the specialist to obtain, in time, a great alternative (or near-optimal) for the development of an oil field known

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Produced water is the main effluent linked to the activity of extraction of oil and their caring management is necessary due to the large volume involved, to ensure to minimize the negative impacts of discharges of these waters in the environment. This study aimed to analyze the use of retorted shale, which is a reject from the pyrolysis of pirobituminous shale, as adsorbent for the removal of phenols in produced water. The material was characterized by different techniques (grain sized analysis, thermal analysis, BET, FRX, FT-IR, XRD and SEM), showing the heterogeneity in their composition, showing its potential for the removal of varied compounds, as well as the phenols and their derivatives. For the analysis of the efficiency of the oil shale for the adsorption process, assays of adsorption balance were carried through, and also kinetic studies and dynamics adsorption, in the ETE of the UTPF of Petrobras, in Guamaré-RN. The balance assays shown a bigger conformity with the model of Langmuir and the kinetic model more adjusted to describe the adsorption of phenols in retorted shale was of pseudo-second order. The retorted shale presented a low capacity of adsorption of phenols (1,3mg/g), when related to others conventional adsorbents, however it is enough to the removal of these composites in concentrations presented in the produced water of the UTPF of Guamaré. The assays of dynamics adsorption in field had shown that the concentration of phenol in the effluent was null until reaching its rupture (58 hours). The results showed the possibility of use of the reject for removal of phenols in the final operations of the treatment process, removing as well, satisfactorily, the color and turbidity of the produced water, with more than 90% of removal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the main activities in the petroleum engineering is to estimate the oil production in the existing oil reserves. The calculation of these reserves is crucial to determine the economical feasibility of your explotation. Currently, the petroleum industry is facing problems to analyze production due to the exponentially increasing amount of data provided by the production facilities. Conventional reservoir modeling techniques like numerical reservoir simulation and visualization were well developed and are available. This work proposes intelligent methods, like artificial neural networks, to predict the oil production and compare the results with the ones obtained by the numerical simulation, method quite a lot used in the practice to realization of the oil production prediction behavior. The artificial neural networks will be used due your learning, adaptation and interpolation capabilities

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transport of fluids through pipes is used in the oil industry, being the pipelines an important link in the logistics flow of fluids. However, the pipelines suffer deterioration in their walls caused by several factors which may cause loss of fluids to the environment, justifying the investment in techniques and methods of leak detection to minimize fluid loss and environmental damage. This work presents the development of a supervisory module in order to inform to the operator the leakage in the pipeline monitored in the shortest time possible, in order that the operator log procedure that entails the end of the leak. This module is a component of a system designed to detect leaks in oil pipelines using sonic technology, wavelets and neural networks. The plant used in the development and testing of the module presented here was the system of tanks of LAMP, and its LAN, as monitoring network. The proposal consists of, basically, two stages. Initially, assess the performance of the communication infrastructure of the supervisory module. Later, simulate leaks so that the DSP sends information to the supervisory performs the calculation of the location of leaks and indicate to which sensor the leak is closer, and using the system of tanks of LAMP, capture the pressure in the pipeline monitored by piezoresistive sensors, this information being processed by the DSP and sent to the supervisory to be presented to the user in real time

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical resistive heating (ERH) is a thermal method used to improve oil recovery. It can increase oil rate and oil recovery due to temperature increase caused by electrical current passage through oil zone. ERH has some advantage compared with well-known thermal methods such as continuous steam flood, presenting low-water production. This method can be applied to reservoirs with different characteristics and initial reservoir conditions. Commercial software was used to test several cases using a semi-synthetic homogeneous reservoir with some characteristics as found in northeast Brazilian basins. It was realized a sensitivity analysis of some reservoir parameters, such as: oil zone, aquifer presence, gas cap presence and oil saturation on oil recovery and energy consumption. Then it was tested several cases studying the electrical variables considered more important in the process, such as: voltage, electrical configurations and electrodes positions. Energy optimization by electrodes voltage levels changes and electrical settings modify the intensity and the electrical current distribution in oil zone and, consequently, their influences in reservoir temperature reached at some regions. Results show which reservoir parameters were significant in order to improve oil recovery and energy requirement in for each reservoir. Most significant parameters on oil recovery and electrical energy delivered were oil thickness, presence of aquifer, presence of gas cap, voltage, electrical configuration and electrodes positions. Factors such as: connate water, water salinity and relative permeability to water at irreducible oil saturation had low influence on oil recovery but had some influence in energy requirements. It was possible to optimize energy consumption and oil recovery by electrical variables. Energy requirements can decrease by changing electrodes voltages during the process. This application can be extended to heavy oil reservoirs of high depth, such as offshore fields, where nowadays it is not applicable any conventional thermal process such as steam flooding