17 resultados para pseudo-ternary phase-diagram
Resumo:
Gene therapy is based on the transfer of exogenous genetic material into cells or tissues in order to correct, supplement or silencing a particular gene. To achieve this goal, efficient vehicles, viral or non-viral, should be developed. The aim of this work was to produce and evaluate a nanoemulsion system as a possible carrier for no-viral gene therapy able to load a plasmid model (pIRES2-EGFP). The nanoemulsion was produced by the sonication method, after been choose in a pseudo-ternary phase diagram build with 5 % of Captex 355®, 1.2 % of Tween 80®, 0.8 % of Span 80®, 0.16% of stearylamine and water (to 100 %). Measurements of droplet size, polydispersity index (PI), zeta potential, pH and conductivity, were performed to characterize the system. Results showed droplets smaller than 200 nm (PI < 0.2) and zeta potential > 30 mV. The formulation pH was near to 7.0 and conductivity was that expected to oil in water systems (70 to 90 μS/s) A scale up study, the stability of the system and the best sterilization method were also evaluated. We found that the system may be scaled up considering the time of sonication according to the volume produced, filtration was the best sterilization process and nanoemulsions were stable by 180 days at 4 ºC. Once developed, the complexation efficiency of the plasmid (pDNA) by the system was tested by agarose gel electrophoresis retardation assay.. The complexation efficiency increases when stearylamine was incorporated into aqueous phase (from 46 to 115 ng/μL); regarding a contact period (nanoemulsion / pDNA) of at least 2 hours in an ice bath, for complete lipoplex formation. The nanoemulsion showed low toxicity in MRC-5 cells at the usual transfection concentration, 81.49 % of survival was found. So, it can be concluded that a nanoemulsion in which a plasmid model was loaded was achieved. However, further studies concerning transfectation efficiency should be performed to confirm the system as non-viral gene carrier
Resumo:
The skin is one of the largest organs of the human body and accounts for about 16% of body weight. The body protection against the external environment microorganisms is one of its most important functions, however is necessary that the skin remain intact for this function be exercised, so that when there is an injury on the skin, the process of restructuring needs to be starts, however this restructuration may also be compromised due to some diseases, justifying even more the need for the development of topical products that promote or accelerate the skin healing. Thus the aim of this study was to extract bullfrog oil and to develop a suitable topical emulsion. Two different oil samples were extracted by hot or organic solvent process. Titration techniques and gas chromatography- mass spectrometry were used to characterize the bullfrog oil. The required hydrophile-lipophile balance (HLBr) of bullfrog oil was determined and a pseudo-ternary phase diagram was constructed. The stability of the topical emulsion was evaluated. Then, cellular viability was determined by MTT assay using normal fibroblasts (3T3) and melanoma (B16F10) cells lines. The hot extraction yield was 60.6%. The major polyunsaturated compounds found were Eicosapentaenoic acid (17.6%) and Arachidonic acid (8.4%). HLBr study demonstrated the presence of stable systems with HLB ranging from 12.1 to 13.5 and the pseudo-ternary phase diagram showed mainly emulsion systems (62%). Topical emulsion showed 390 nm, polydispersity 0.05, zeta potential -25 mV and remained stable for ninety days. The bullfrog oil and topical emulsion did not showed citotoxicity in normal fibroblasts cells. However, these systems showed significantly inhibition of melanoma cells growth. In conclusion, the bullfrog oil presented desirable chemical characteristics required to be used for the development of a pharmaceutical and cosmetic products.
Resumo:
The growing utilization of surfactants in several different areas of industry has led to an increase on the studies involving solutions containing this type of molecules. Due to its amphiphilic nature, its molecule presents one polar part and one nonpolar end, which easily interacts with other molecules, being able to modify the media properties. When the concentration in which its monomers are saturated, the airliquid system interface is reached, causing a decrease in interfacial tension. The surfactants from pure fatty acids containing C8, C12 and C16 carbonic chains were synthesized in an alcoholic media using sodium hydroxide. They were characterized via thermal analysis (DTA and DTG) and via infrared spectroscopy, with the intention of observing their purity. Physical and chemical properties such as superficial tension, critical micelle concentration (c.m.c), surfactant excess on surface and Gibbs free energy of micellization were determined in order to understand the behaviour of these molecules with an aqueous media. Pseudo-ternary phase diagrams were obtained aiming to limit the Windsor equilibria conditions so it could be possible to understand how the surfactants carbonic chain size contributes to the microemulsion region. Solutions with known concentrations were prepared to study how the surfactants can influence the dynamic light scattering spectroscopy (DLS) and how the diffusion coefficient is influenced when the media concentration is altered. The results showed the variation on the chain size of the studied surfactant lipophilic part allows the conception of surfactants with similar interfacial properties, but dependent on the size of the lipophilic part of the surfactant. This variation causes the surfactant to have less tendency of microemulsionate oil in water. Another observed result is that the n-alcanes molecule size promoted a decrease on the microemulsion region on the obtained phase diagrams
Utilização de microemulsões como agentes modificadores de superfícies para remoção de íons metálicos
Resumo:
The heavy metals are used in many industrial processes and when discharged to the environment can cause harmful effects to human, plants and animals. The adsorption technology has been used as an effective methodology to remove metallic ions. The search for new adsorbents motivated the development of this research, accomplished with the purpose of removing Cr (III) from aqueous solutions. Diatomite, chitosan, Filtrol 24TM and active carbon were used as adsorbents. To modify the adsorbent surface was used a bicontinuous microemulsion composed by water (25%), kerosene (25%), saponified coconut oil (10%) and as co-surfactant isoamyl or butyl alcohols (40%). With the objective of developing the best operational conditions the research started with the surfactant synthesis and after that the pseudo-ternary diagrams were plotted. It was decided to use the system composed with isoamyl alcohol as co-surfactant due its smallest solubility in water. The methodology to impregnate the microemulsion on the adsorbents was developed and to prepare each sample was used 10 g of adsorbent and 20 mL of microemulsion. The effect of drying time and temperature was evaluated and the best results were obtained with T = 65 ºC and t = 48 h. After evaluating the efficiency of the tested adsorbents it was decided to use chitosan and diatomite. The influence of the agitation speed, granule size, heavy metal synthetic solution concentration, pH, contact time between adsorbent and metal solution, presence or not of NaCl and others metallic ions in the solution (copper and nickel) were evaluated. The adsorption isotherms were obtained and Freundlich and Langmuir models were tested. The last one correlated better the data. With the purpose to evaluate if using a surfactant solution would supply similar results, the adsorbent surface was modified with this solution. It was verified that the adsorbent impregnated with a microemulsion was more effective than the one with a surfactant solution, showing that the organic phase (kerosene) was important in the heavy metal removal process. It was studied the desorption process and verified that the concentrated minerals acids removed the chromium from the adsorbent surface better than others tested solutions. The treatment showed to be effective, being obtained an increase of approximately 10% in the chitosan s adsorption capacity (132 mg of Cr3+ / g adsorbent), that was already quite efficient, and for diatomite, that was not capable to remove the metal without the microemulsion treatment, it was obtained a capacity of 10 mg of Cr3+ / g adsorbent, checking the applied treatment effectiveness
Resumo:
Effluent color resulting from textile dyeing processes has been one of the biggest environmental problems faced by the textile industry. In particular, reactive dyes are highly resistant to conventional wastewater treatment methods. New technologies have been contemplated, some of which have been applied in industrial treatment plants, but color removal has not been efficiently attained. Since microemulsion systems provide good results in heavy metals and proteins extraction processes, their use in dyes extraction has been suggested and investigated. In this work, a real textile wastewater from an exhaustion dyebath has been treated, which contains the following reactive dyes: Procion Yellow H-E4R (CI Reactive Yellow 84), Procion Blue H-ERD (CI Reactive Blue 160) and Procion Red H-E3B (CI Reactive Red 120), in addition to auxiliary compounds normally found in dyeing processes with reactive dyes. The dyes Remazol Blue RR and Remazol Turquoise Blue G (Reactive Blue 21) have also been examined in view of the presence of heavy metals in these molecules. The microemulsion system comprised dodecyl ammonium chloride (as a cationic surfactant), water or wastewater as aqueous phase, kerosene as oil phase, and one of the following alcohols as cosurfactant: isoamyl alcohol, n-butyl alcohol and n-octyl alcohol. The pseudo-ternary diagrams were constructed in order to define Winsor s equilibrium regions. The influence of parameters such as pH, C/S (cosurfactant/surfactant) ratio, distribution coefficient, initial dye concentration, salinity, temperature, phases relative amounts, loading capacity of the microemulsion phase and dye reextraction rate has also been investigated. An experimental planning (Scheffé Net) was used to optimize the extraction process. The removal of color and metals reached levels as high as 99%
Resumo:
This work deals with the application of X-Ray Absorption Spectroscopy on the study of the behavior of Cu2+ ions in inverse micelles. The formation of copper nanoparticles in water-in-oil microemulsions in pseudo-ternary systems of cetyl trimethylammonium Bromide (CTAB) surfactant, butanol co-surfactant, heptane as oil phase and aqueous solutions of CuSO4.5H2O, and NaBH4. The microemulsions were prepared with a fixed percentage (60 %) of oil phase and a variable water to tensoative proportion. It was observed an increase on Cu2+ reduction by the sodium borohydride in microemulsions with 13 % of aqueous phase, independent of the reaction time. For the microemulsions in which the aqueous phase is composed only by the CuSO4 solution, it was observed that the color of the solution depends on the water to surfactant ratio. These changes in color were attributed to a competition for the hidratation water between the polar head of the tensoative and Cu2+ ions with the eventual substitution of oxygen by bromine atoms in the first coordination shell of Cu2+ ions
Resumo:
With the increase of asphalt milling services was also a significant increase in recycling services pavements. The techniques used today are basically physical processes in which the milled material is incorporated into new asphalt mixtures or executed on site, with the addition of virgin asphalt and rejuvenating agent. In this paper seeks to analyze the efficiency of extraction of CAP (Petroleum Asphalt Cement) mixtures from asphalt milling, using commercial solvents and microemulsions. The solvents were evaluated for their ability to solubilize asphalt using an extractor reflux-type apparatus. Pseudoternary diagrams were developed for the preparation of microemulsion O/W surfactant using a low-cost coconut oil saponified (OCS). Microemulsions were used to extract the CAP of asphalt through physicochemical process cold. Analysis was performed concentration of CAP in solution by spectroscopy. The data provided in the analysis of concentration by the absorbance of the solution as the basis for calculating the percentage of extraction and the mass flow of the CAP in the solution. The results showed that microemulsions prepared with low concentration of kerosene and butanol/OCS binary has high extraction power of CAP and its efficiency was higher than pure kerosene, reaching 95% rate of extraction
Resumo:
The industry, over the years, has been working to improve the efficiency of diesel engines. More recently, it was observed the need to reduce pollutant emissions to conform to the stringent environmental regulations. This has attached a great interest to develop researches in order to replace the petroleum-based fuels by several types of less polluting fuels, such as blends of diesel oil with vegetable oil esters and diesel fuel with vegetable oils and alcohol, emulsions, and also microemulsions. The main objective of this work was the development of microemulsion systems using nonionic surfactants that belong to the Nonylphenols ethoxylated group and Lauric ethoxylated alcohol group, ethanol/diesel blends, and diesel/biodiesel blends for use in diesel engines. First, in order to select the microemulsion systems, ternary phase diagrams of the used blends were obtained. The systems were composed by: nonionic surfactants, water as polar phase, and diesel fuel or diesel/biodiesel blends as apolar phase. The microemulsion systems and blends, which represent the studied fuels, were characterized by density, viscosity, cetane number and flash point. It was also evaluated the effect of temperature in the stability of microemulsion systems, the performance of the engine, and the emissions of carbon monoxide, nitrogen oxides, unburned hydrocarbons, and smoke for all studied blends. Tests of specific fuel consumption as a function of engine power were accomplished in a cycle diesel engine on a dynamometer bench and the emissions were evaluated using a GreenLine 8000 analyzer. The obtained results showed a slight increase in fuel consumption when microemulsion systems and diesel/biodiesel blends were burned, but it was observed a reduction in the emission of nitrogen oxides, unburned hydrocarbons, smoke index and f sulfur oxides
Resumo:
The usual Ashkin-Teller (AT) model is obtained as a superposition of two Ising models coupled through a four-spin interaction term. In two dimension the AT model displays a line of fixed points along which the exponents vary continuously. On this line the model becomes soluble via a mapping onto the Baxter model. Such richness of multicritical behavior led Grest and Widom to introduce the N-color Ashkin-Teller model (N-AT). Those authors made an extensive analysis of the model thus introduced both in the isotropic as well as in the anisotropic cases by several analytical and computational methods. In the present work we define a more general version of the 3-color Ashkin-Teller model by introducing a 6-spin interaction term. We investigate the corresponding symmetry structure presented by our model in conjunction with an analysis of possible phase diagrams obtained by real space renormalization group techniques. The phase diagram are obtained at finite temperature in the region where the ferromagnetic behavior is predominant. Through the use of the transmissivities concepts we obtain the recursion relations in some periodical as well as aperiodic hierarchical lattices. In a first analysis we initially consider the two-color Ashkin-Teller model in order to obtain some results with could be used as a guide to our main purpose. In the anisotropic case the model was previously studied on the Wheatstone bridge by Claudionor Bezerra in his Master Degree dissertation. By using more appropriated computational resources we obtained isomorphic critical surfaces described in Bezerra's work but not properly identified. Besides, we also analyzed the isotropic version in an aperiodic hierarchical lattice, and we showed how the geometric fluctuations are affected by such aperiodicity and its consequences in the corresponding critical behavior. Those analysis were carried out by the use of appropriated definitions of transmissivities. Finally, we considered the modified 3-AT model with a 6-spin couplings. With the inclusion of such term the model becomes more attractive from the symmetry point of view. For some hierarchical lattices we derived general recursion relations in the anisotropic version of the model (3-AAT), from which case we can obtain the corresponding equations for the isotropic version (3-IAT). The 3-IAT was studied extensively in the whole region where the ferromagnetic couplings are dominant. The fixed points and the respective critical exponents were determined. By analyzing the attraction basins of such fixed points we were able to find the three-parameter phase diagram (temperature £ 4-spin coupling £ 6-spin coupling). We could identify fixed points corresponding to the universality class of Ising and 4- and 8-state Potts model. We also obtained a fixed point which seems to be a sort of reminiscence of a 6-state Potts fixed point as well as a possible indication of the existence of a Baxter line. Some unstable fixed points which do not belong to any aforementioned q-state Potts universality class was also found
Resumo:
In this work we study the phase transitions of the ferromagnetic three-color Ashkin-Teller Model in the hierarquical lattice generated by the Wheatstone bridge using real space renormalization group approach. With such technique we obtain the phase diagram and its critical points with respective critical exponents v. This model presents four phases: ferromagnetic, paramagnetic and two intermediates. Nine critical points were found, three of which are of Ising model type, three are of four states Potts model type, one is of eight states Potts model type and the last two which do not correspond to any Potts model with integer number of states. iv
Resumo:
A real space renormalization group method is used to investigate the criticality (phase diagrams, critical expoentes and universality classes) of Z(4) model in two and three dimensions. The values of the interaction parameters are chosen in such a way as to cover the complete phase diagrams of the model, which presents the following phases: (i) Paramagnetic (P); (ii) Ferromagnetic (F); (iii) Antiferromagnetic (AF); (iv) Intermediate Ferromagnetic (IF) and Intermediate Antiferromagnetic (IAF). In the hierarquical lattices, generated by renormalization the phase diagrams are exact. It is also possible to obtain approximated results for square and simple cubic lattices. In the bidimensional case a self-dual lattice is used and the resulting phase diagram reproduces all the exact results known for the square lattice. The Migdal-Kadanoff transformation is applied to the three dimensional case and the additional phases previously suggested by Ditzian et al, are not found
Resumo:
In this work we have studied the effects of random biquadratic and random fields in spin-glass models using the replica method. The effect of a random biquadratic coupling was studied in two spin-1 spin-glass models: in one case the interactions occur between pairs of spins, whereas in the second one the interactions occur between p spins and the limit p > oo is considered. Both couplings (spin glass and biquadratic) have zero-mean Gaussian probability distributions. In the first model, the replica-symmetric assumption reveals that the system presents two pha¬ses, namely, paramagnetic and spin-glass, separated by a continuous transition line. The stability analysis of the replica-symmetric solution yields, besides the usual instability associated with the spin-glass ordering, a new phase due to the random biquadratic cou¬plings between the spins. For the case p oo, the replica-symmetric assumption yields again only two phases, namely, paramagnetic and quadrupolar. In both these phases the spin-glass parameter is zero. Besides, it is shown that they are stable under the Almeida-Thouless stability analysis. One of them presents negative entropy at low temperatures. We developed one step of replica simmetry breaking and noticed that a new phase, the biquadratic glass phase, emerge. In this way we have obtained the correct phase diagram, with.three first-order transition lines. These lines merges in a common triple point. The effects of random fields were studied in the Sherrington-Kirkpatrick model consi¬dered in the presence of an external random magnetic field following a trimodal distribu¬tion {P{hi) = p+S(hi - h0) +Po${hi) +pS(hi + h0))- It is shown that the border of the ferromagnetic phase may present, for conveniently chosen values of p0 and hQ, first-order phase transitions, as well as tricritical points at finite temperatures. It is verified that the first-order phase transitions are directly related to the dilution in the fields: the extensions of these transitions are reduced for increasing values of po- In fact, the threshold value pg, above which all phase transitions are continuous, is calculated analytically. The stability analysis of the replica-symmetric solution is performed and the regions of validity of such a solution are identified
Resumo:
This work aims to study the influence of two additives, the monomer, acrylamide and its polymer, polyacrylamide, solubilized in microemulsion systems and applied on enhanced oil recovery. By the microemulsion system obtained, it was chosen points into the phase diagram, presenting these compositions: 25%, 30%, 35% C/T; 2% Fo (fixed for all points) e 73%, 68% e 63% Fa, respectively. However, the monomer and the polymer were solubilized in these microemulsion points with 0.1%; 0.5%; 1% e 2% of concentration, ordering to check the concentration influence at the physicochemical properties (surface tension and rheology) of the microemulsion. Through the salinity study, was possible to observe that the concentrations of 1% and 2% of polymer made the solution became blurred, accordingly, the study of surface tension and rheology only was made for the concentrations of 0.1% e 0.5% of monomer and polymer, respectively. By the surface tension study it was observed that how the concentration of active matter (C/T) was increasing the surface tension was amending for each system, with or without additives. In the rheology study, as it increases the concentration of active matter increases both the viscosity of the microemulsion system (SME) with no additive, as the SME with polymer (AD2). After the entire study, it was chosen the lower point of active matter (25% C/T; 2% Fo e 73% Fa), plus additives in concentrations of 0.1% and 0.5% to be used on enhanced oil recovery. Assays were made on sandstone from Botucatu Formation, where after the tests, it was concluded that among the studied points, the point who showed the best efficiency of advanced shift was the microemulsion system + 0.5% AD2, with a recovery of 28% of oil in place and a total of 96,49%, while the other solution with 0.5% of polymer presented the worst result, with 14.1% of oil in place and 67,39% of efficiency of total displacement
Resumo:
The present work reports a theoretical study of the vortex nucleation in elliptical nanoelements of iron with the dimensions of the principal and secondary axes in the range of hundreds of nanometers. It will be divided into three steps: first of all, a general panorama and a justification for the interest of the study of nanosystems and their applications. Second, a explanation about the computational simulations applied for the calculations of the remanent states after the saturation in a external field which value is grater then the exchange field of the material for nanoelements coupled or not to a antiferromagnetic substrate. Systems with that range of axes dimensions and height in the range of a few dozens of nanometers have a natural tendency to nucleate closed magnetic ux, like vortex. Third, we will emphasize the nucleation of double vortex, the main types and the dimensions in which they occur (phase diagram) and the factors that may in uence in the nucleation and control of the remanent state. We shown that we can control specially the distance between the vortex cores changing the value of the interface field. Finally, we present a expectative of continuity of this work with objectives and applications
Resumo:
The production of waste from urban and industrial activities is one of the factors of environmental contamination and has aroused attention of the scientific community, in the sense of its reuse. On the other hand, the city of Salvador/Ba, with approximately 262 channels, responsible for storm water runoff, produces every year, by the intervention of cleaning and clearing channels, a significant volume of sediments (dredged mud), and thus an appropriate methodology for their final destination. This study aims to assess the influence of incorporation of these tailings in arrays of clay for production of interlocked block ceramic, also known as ceramic paver. All the raw materials from the metropolitan region of Salvador (RMS) were characterized by x-ray fluorescence, x-ray diffraction, thermal analysis (TG and TDA), particle size analysis and dilatometry. With the use of statistical experimental planning technique, ternary diagram was defined in the study region and the analyzed formulations. The specimens were prepared with dimensions of 60x20x5mm³, by uniaxial pressing of 30 MPa and after sintering at temperatures of 900°, 1000º and 1100ºC the technological properties were evaluated: linear shrinkage, water absorption, apparent porosity, apparent specifies mass, flexural rupture and module. For the uniaxial compression strength used cylindrical probe body with Ø 50 mm. The standard mass (MP) was prepared with 90% by weight of clay and 10% by weight of Channel sediment (SCP), not being verified significant variations in the properties of the final product. With the incorporation of 10% by weight of manganese residue (PFM) and 10% by weight of the Ceramic waste (RCB) in the mass default, in addition to adjusting the plasticity due to less waste clay content, provided increased linear firing shrinkage, due the significant concentration of K2O, forming liquid phase at low temperature, contributing to decreased porosity and mechanical resistance, being 92,5 MPa maximum compressive strength verified. After extract test leachate and soluble, the piece containing 10% of the PFM, was classified as non-hazardous and inert material according to NBR10004/04 ABNT. The results showed the feasibility on using waste, SCP, RCB and PFM clay mass, at temperatures above 900ºC, paver ceramic production, according to the specifications of the technical standards, so that to exceed the 10% of the PFM, it becomes imperative to conduct studies of environmental impacts