20 resultados para ligamento cruzado
Resumo:
Muscle fatigue is a phenomenon that promotes physiological and biomechanical disorders and their changes in healthy subjects have been widely studied and have significant importance for care in preventing injuries, but we do not have many information about its effects in patients after ACL reconstruction. Thus, this study is to analyze the effects of fatigue on neuromuscular behavior of quadriceps after ACL reconstruction. To reach this objective, participants were forty men, twenty healthy (26,90 ± 6,29 years) and twenty after ACL reconstruction (29,75 ± 7,01 years) with a graft of semitendinosus and gracilis tendons, between four to six months after surgery. At first, there was an assessment of joint position sense (JPS) at the isokinetic dynamometer at a speed of 5°/s and target angle of 45° to analyze the absolute error of JPS. Next, we applied the a muscle fatigue protocol, running 100 repetitions of isokinetic knee flexion-extension at 90°/s. Concurrently with this protocol, there was the assessment of muscle performance, as the peak torque (PT) and fatigue index, and electromyographic activity (RMS and median frequency). Finally, we repeated the assessment of JPS. The statistical analysis showed that patients after ACL reconstruction have, even under normal conditions, the amended JPS compared with healthy subjects and that after fatigue, both have disturbances in the JPS, but this alteration is significantly exacerbated in patients after ACL reconstruction. About muscle performance, we could notice that these patients have a lower PT, although there are no differences between the dynamometric and EMG fatigue index. These findings show the necessity about the cares of pacients with ACL reconstruction in respect of the risks of articulate instability and overload in ligamentar graft
Resumo:
Objetivo: Investigar os efeitos imediatos do Kinesio Taping® no desempenho neuromuscular do Quadríceps Femoral (QF) de indivíduos submetidos à reconstrução do Ligamento Cruzado Anterior (LCA). Metodologia: trata-se de um ensaio clínico e randomizado composto por 45 indivíduos do sexo masculino que se encontravam entre 12ª e 17ª semanas após reconstrução do LCA. Todos foram submetidos a uma avaliação inicial composta pela análise do equilíbrio postural, através da baropodometria; determinação do Senso de Posição Articular (SPA), seguidas das avaliações isocinéticas excêntricas e concêntricas a 600/s, concomitante com a captação do sinal eletromiográfico do músculo Vasto Lateral (VL). Posteriormente foram alocados de forma aleatória em Grupo Controle (GC), Grupo Placebo (GP) e Grupo Experimental (GE). Os indivíduos do GE foram submetidos ao protocolo sugerido (aplicação do Kinesio Taping® no QF do membro acometido), enquanto os do GP utilizaram a aplicação do Kinesio Taping® sem as recomendações propostas pelo método. Já os indivíduos do GC permaneceram em repouso por dez minutos, sendo todos os indivíduos submetidos a uma reavaliação de forma idêntica à primeira. Foram analisadas as seguintes variáveis: pico de torque médio, pico de torque/peso corporal, potência muscular e erro absoluto do SPA para a dinamometria; amplitude ântero-posterior e médio-lateral para a baropodometria; e a amplitude de ativação muscular (Root Means Square - RMS) por meio da eletromiografia de superfície. Resultados: Nenhuma das variáveis analisadas apresentou diferenças intergrupo ou intragrupo. Conclusão: O Kinesio Taping® não altera o desempenho neuromuscular do quadríceps femoral de indivíduos submetidos à reconstrução do LCA para nenhuma das variáveis analisadas.
Resumo:
Background: Several studies emphasize the importance of assessing the knee function after anterior cruciate ligament (ACL) reconstruction. The influence of several variables on the function of these patients has been analyzed, but there is no consensus in the science literature. Purpose: To evaluate the correlation between the torque and balance on the knee function after ACL reconstruction. Methods: 23 males patients with ACL reconstruction were tested. The procedures of the study included analysis of concentric peak torque at 60o/s and 180o/s of quadriceps femoris and hamstring muscle with a isokinetic dynamometer. The balance in single-limb stance was measured with stabilometry. The functional performance were performed by two hop tests. To estimate the subjective function of the patients was applied Lysholm Knee Scoring Scale and a Global Rating scale. Results: The analysis of data showed a moderate positive correlation between knee extensor torque and functional performance tests (r= 0,48; p=0,02). A moderate negative correlation was found between the two variables of the stabilometry center of pressure and average speed of centre of pressure and the Global Rating scale (r = -0.4, p = 0,04 and r = -0,49, p = 0 ,02, respectively). No correlation was found between peak torque and balance in single-limb stance. Conclusion: The results of the present study suggest that knee extensor strength and postural balance have some influence on knee function in patients after ACL reconstruction
Resumo:
Objective: to investigate the immediate effect of the vibrating platform on the neuromuscular performance of the quadriceps femoris and on the postural oscillation of subjects submitted to Anterior Cruciate Ligament (ACL) reconstruction. Materials and methods: this study is a randomized and blind clinical trial. Forty-four male volunteers (average age of 27,4 ±6,2 IMC of 26,85± 3,8 Kg/m² and post surgery timeframe of 17± 1,4 weeks) were randomized into two groups: OFF platform (n=22, protocol of exercise over the vibrating platform off) and ON platform (n=22 protocol of exercise over the vibrating platform on, 50Hz frequency and 4mm of amplitude). All volunteers were submitted to assessment the isokinetic evaluation of the quadriceps femoris (isometric and isokinetic at 60°/s) and of the electromyography activity of the muscles Vasto Lateralis (VL) and Vasto Medialis (VM), besides the postural oscillation (baropodometry) in two distinct moments: before and immediately after the intervention protocol. The data was analyzed through the SPSS 20.0 software, with a 5% significance level. To verify the homogeneity of the groups it was used an ANOVA one way, and a ANOVA mixed model to compare the intra and inter groups. Results: it was observed differences between the pre and the post, to latero lateral velocity, isometric torque peak and total work in comparison with intragroup. However, it wasn’t verified any difference in comparing the intergroup in the preevaluation and in the post-evaluation protocol over the vibrating platform. Conclusion: the use of the vibrating platform doesn’t change as an immediate manner the isokinetic performance of the quadriceps femoris, the electromyography activity of the VL and the VM, also doesn’t interfere with the postural oscillation of individuals that were submitted to the ACL reconstruction.
Resumo:
The present experiment used cell culture to analyze the adhesion capacity of mouse mesenchymal bone marrow cells and rat periodontal ligament to different titanium surfaces. Grade II ASTM F86 titanium discs 15mm in diameter and 1.5mm thick were used and received 2 distinct surface treatments (polished and cathodic cage plasma nitriding). The cells were isolated from the mouse bone marrow and rat periodontal ligament and cultured in α-MEM basic culture medium containing antibiotics and supplemented with 10% FBS and 5% CO2, for 72 hours at 37ºC in a humidified atmosphere. Subculture cells were cultured in a 24-well plate with a density of 1 x 104 cells per well. The titanium discs were distributed in accordance with the groups, including positive controls without titanium discs. After a 24-hour culture, the cells were counted in a Neubauer chamber. The results show that both the mouse mesenchymal bone marrow cells and rat periodontal ligament cells had better adhesion to the control surface. The number of bone marrow cells adhered to the polished Ti surface was not statistically significant when compared to the same type of cell adhered to the Ti surface treated by cathodic cage plasma nitriding. However a significant difference was found between the control and polished Ti groups. In relation to periodontal ligament cell adhesion, a significant difference was only found between the control and plasma-treated Ti surfaces. When comparing equal surfaces with different cells, no statistically significant difference was observed. We can therefore conclude that titanium is a good material for mesenchymal cell adhesion and that different material surface treatments can influence this process
Resumo:
Cryopreservation is a process where cells or biological tissues are preserved by freezing at very low temperatures and aims to cease reversibly, in a controlled manner, all the biological functions of living tissues, i.e., maintain cell preservation so that it can recover with high degree of viability and functional integrity. This study aimed to evaluate the influence of cryopreservation on the mesenchymal stem cells originating from the periodontal ligament of human third molars by in vitro experiments. Six healthy teeth were removed and the periodontal cells grown in culture medium containing α-MEM supplemented with antibiotics and 15% FBS in a humidified atmosphere with 5% CO2 at 37° C. Cells isolated from each sample were divided into two groups: Group I - immediate cell culture (not fresh cryopreserved cells) and Group II - cell cryopreservation, during a period of 30 days. Analyses of rates of cell adhesion and proliferation in different groups were performed by counting the cells adhered to the wells, in intervals of 24, 48 and 72 hours after the start of cultivation. The number of cells in each well was obtained by counting viable cells with the use of hemocytometer and the method of exclusion of cells stained by trypan blue. The difference between groups for each of the times was analyzed by Wilcoxon test. Regarding the temporal evolution for each group, analysis was done by Friedman's test to verify the existence of differences between times and, when it existed, the Wilcoxon penalty was applied. The results showed no statistically significant difference between the two groups analyzed in this study. Therefore, we conclude that the cryopreservation process, after a period of 30 days, did not influence the cell type studied, and there was no difference in growth capacity in vitro between the groups
Resumo:
In the last years, many scientific researches in implantology have been focused on alternatives that would provide higher speed and quality in the process of osseointegration. Different treatment methods can be used to modify the topographic and chemical properties of titanium surface in order to optimize the tissue-implant reactions by a positive tissue response. This study aimed to evaluate the adhesion and proliferation of mesenchymal cells from human periodontal ligament on two different titanium surfaces, using cell culture techniques. Grade II titanium discs received different surface treatments, forming two distinct groups: polished and cathodic cage plasma nitriding. Human periodontal ligament mesenchymal cells were cultured on titanium discs in 24-well cell culture plates, at a density of 2 x 104 cells per well, including wells with no discs as positive control. Data obtained by counting the cells that adhered to the titanium surfaces (polished group and cathodic cage group) and to the plastic surface (control group), in the 24, 48 and 72-hour periods after plating, were used to analyze cell adhesion and proliferation and to obtain the cell growing curve in the different groups. The data were submitted to nonparametric analysis and the differences between groups were compared by Kruskal-Wallis and Friedman statistical tests. No statistically significant differences were found in the cells counts between the groups (p>0.05). It was concluded that both treatments produced surfaces compatible with the adhesion and proliferation of human periodontal ligament mesenchymal cells
Resumo:
Low level laser irradiation (LLLI) has been used in Dentistry to promote wound healing and tissue regeneration. The literature shows a positive effect of LLLI on cell proliferation, but little is known about their effectiveness in promoting stem cells proliferation. The aim of this study was to evaluate the effect of LLLI on the proliferative rate of human periodontal ligament stem cells. Extracts of periodontal ligament were isolated from two third molars removed by surgical and/or orthodontic indication. After enzymatic digestion, the cells were grown in α-MEM culture medium supplemented with antibiotics and 15% fetal bovine serum. On the third subculture, the cells were irradiated with a InGaAlP-diode laser, using two different energy densities (0,5J/cm 2 - 16 seconds and 1,0J/cm² - 33 seconds), with wavelength of 660nm and output power of 30mW. A new irradiation, using the same parameters, was performed 48h after the first. A control group (non irradiated) was kept under the same experimental culture conditions. The Trypan blue exclusion test and the mitochondrial activity of the cells measured by MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] essay were performed to assess the cell proliferation in the intervals of 0, 24, 48 e 72 h after irradiation. The data of cell counts were submitted to nonparametrical statistical tests (Kruskal-Wallis and Mann-Whitney), considering a confidence interval of 95%. DAPI (4 -6-Diamidino-2-phenylindole) staining of the cells was performed at 72h interval to evaluate possible nuclear morphological changes induced by LLLI. The results of this study show that the energy density of 1,0 J/cm² promoted greater cell proliferation compared to the other groups (control and 0,5 J/cm²) at intervals of 48 and 72h. The mitochondrial activity measured by MTT essay showed similar results to the Trypan blue cell counting test. The group irradiated with 1,0J/cm² exhibited a significantly higher MTT activity in the intervals of 48 and 72h, when compared to the group irradiated with 0,5J/cm². No nuclear morphological change was observed in the cells from the three groups studied. It is concluded that LLLI has stimulatory effects on the proliferation of human periodontal ligament stem cells. Therefore, the use of laser irradiation in this cell type may be important to promote future advances in periodontal regeneration
Resumo:
The mobilization of food reserves in storage tissues and allocation of their hydrolysis products in the growing axis are critical processes for the establishment of seedlings after germination. Therefore, it is crucial for mobilization of reserves to be synchronized with the growing axis, so that photosynthetic activity can be started before depletion of reserves. For this, integrative approaches involving different reserves, different hydrolysis products and interaction between storage and growing axis tissues, either through hormones or metabolites with signaling role, can contribute greatly to the elucidation of the regulation mechanisms for reserve mobilization. In this study, was hypothesized that hormones and metabolites have different actions on reserve mobilization, and there must be a crossed effect of sugars on the mobilization of proteins and amino acids on lipids and starch mobilization in sunflower seedlings. This study was conducted with seeds of sunflower (Helianthus annuus L.) hybrid Helio 253 using in vitro culture system. Seeds were germinated on Germitest® paper and grown on agar-water 4 g/L without addition of nutrients during 9 days after imbibition (DAI) for growth curve. To verify the effect of metabolites and hormones, seedlings were transferred in the 2nd DAI to agar-water 4 g/L supplemented with increasing concentrations of sucrose or L-glutamine, abscisic acid, gibberellic acid or indolebutyric acid. The results of this study confirm that the mobilization of lipids and storage proteins occurs in a coordinated manner during post-germination growth in sunflower, corroborating the hypothesis that the application of external carbon (sucrose) and nitrogen (L-glutamine) sources can delay the mobilization of these reserves in a crossed way. Moreover, considering the changes in the patterns of reserve mobilization and partition of their products in seedlings treated with different growth regulators, it is evident that the effects of metabolites and hormones must involve, at least in part, distinct mechanisms of action
Resumo:
This study compared the evolution of posture, tone and neonatal reflexes in preterm infants without clinical or neurological complications before and after the age of term using the scale of Saint-Anne Dargassies. To reach the age of the term, was applied Scales Amiel-Barrier-Shnider changed and the Prechtl, traditionally used in the evaluation of term newborns, looking for possible changes to the term, while also evaluating the sensitivity of these scales. We studied 20 non-complicated preterm infants, both sexes aged 32-36 weeks, born in Januário Cicco Maternity School, from August 2006 to August 2007. Was applied to the scale of Saint-Anne Dargassies every two weeks until reach the term, and the range of Amiel-Barrier-Shnider changed and the Prechtl, after reaching 39 and 41 weeks. The evaluation result of articular angles was subjected to the test of Friedman ANOVA, significant differences between the three measurements of the scale of Saint-Anne Dargassies only for angles heel-to-ear to term. Neonatal reflexes changed in the period of prematurity were the cardinal points reflexes, Moro reflexes, cross extensions reflex and the automatic walking reflexes. The posture was the parameter which remained unchanged in the three scales. Considering a significance level of 5% by applying Cochran Q Test, it was found that the scale of Saint-Anne Dargassies is more sensitive to detect suspects. With this methodology and the results it was possible to prepare a manuscript: The neurological examination of non-complicated preterm newborns using the Sanit-Anne Dargssies Scale from birth to term: normal or altered? In which we describe that despite the good clinical condition, the RNP show changes in tone and neonatal reflexes. These data are important because though non-complicated RNP need further attention its maturation process, enabling us to detect and intervene early. With these results we can build a scale simplified neurological assessment made with items found most altered during the application of three scales. The development of this project has a multidisciplinary approach, because it involved Paediatric Neurologist, Physiotherapist and Neonatologist, as recommended by PPGCSA
Resumo:
Currently, one of the biggest challenges for the field of data mining is to perform cluster analysis on complex data. Several techniques have been proposed but, in general, they can only achieve good results within specific areas providing no consensus of what would be the best way to group this kind of data. In general, these techniques fail due to non-realistic assumptions about the true probability distribution of the data. Based on this, this thesis proposes a new measure based on Cross Information Potential that uses representative points of the dataset and statistics extracted directly from data to measure the interaction between groups. The proposed approach allows us to use all advantages of this information-theoretic descriptor and solves the limitations imposed on it by its own nature. From this, two cost functions and three algorithms have been proposed to perform cluster analysis. As the use of Information Theory captures the relationship between different patterns, regardless of assumptions about the nature of this relationship, the proposed approach was able to achieve a better performance than the main algorithms in literature. These results apply to the context of synthetic data designed to test the algorithms in specific situations and to real data extracted from problems of different fields
Resumo:
This work consists in the development of a theoretical and numerical analysis for frequency selective surfaces (FSS) structures with conducting patch elements, such as rectangular patches, thin dipoles and cross dipoles, on anisotropic dielectric substrates. The analysis is developed for millimeter wave band applications. The analytical formulation is developed in the spectral domain, by using a rigorous technique known as equivalent transmission line method, or immitance approach. The numerical analysis is completed through the use of the Galerkin's technique in the Fourier transform domain, using entire-domain basis functions. In the last decades, several sophisticated analytical techniques have been developed for FSS structure applications. Within these applications, it can be emphasized the use of FSS structures on reflecting antennas and bandpass radomes. In the analysis, the scattered fields of the FSS geometry are related to the surface induced currents on the conducting patches. After the formulation of the scattering problem, the numerical solution is obtained by using the moment method. The choice of the basis functions plays a very important role in the numerical efficiency of the numerical method, once they should provide a very good approximation to the real current distributions on the FSS analyzed structure. Thereafter, the dyadic Green's function components are obtained in order to evaluate the basis functions unknown coefficients. To accomplish that, the Galerkin's numerical technique is used. Completing the formulation, the incident fields are determined through the incident potential, and as a consequence the FSS transmission and reflection characteristics are determined, as function of the resonant frequency and structural parameters. The main objective of this work was to analyze FSS structures with conducting patch elements, such as thin dipoles, cross dipoles and rectangular patches, on anisotropic dielectric substrates, for high frequency applications. Therefore, numerical results for the FSS structure main characteristics were obtained in the millimeter wave bando Some of these FSS characteristics are the resonant
Resumo:
This work presents a theoretical and numerical analysis of Frequency Selective Surfaces (FSS) with elements as rectangular patch, thin dipole and crossed dipole mounted on uniaxial anisotropic dielectric substrate layers for orientations of the optical axis along x, y and z directions. The analysis of these structures is accomplished by combination of the Hertz vector potentials method and the Galerkin's technique, in the Fourier transform-domain, using entire¬domain basis functions. This study consists in the use of one more technique for analysis of FSS on anisotropic dielectric substrate. And presents as the main contribution the introduction of one more project parameter to determinate the transmission and reflection characteristics of periodic structures, from the use of anisotropic dielectric with orientations of the crystal optical axis along x, y and z directions. To validate this analysis, the numerical results of this work are compared to those obtained by other authors, for FSS structures on anisotropic and isotropic dielectric substrates. Also are compared experimental results and the numerical correspondent ones for the FSS isotropic case. The technique proposed in this work is accurate and efficient. ln a second moment, curves are presented for the transmission and reflection characteristics of the FSS structures using conducting patch elements mounted on uniaxial anisotropic dielectric substrate layers with optical axis oriented along x, y and z directions. From analysis of these curves, the performance of the considered FSS structures as function of the optical axis orientation is described
Resumo:
Mesenchymal stem cells (MSCs) are known as a population of multi-potential cells able to proliferate and differentiate into multiple mesodermal tissues including bone, cartilage, muscle, ligament, tendon, fat and stroma. Several applications of the study of EC can be emphasized the therapeutic techniques such as guided bone regeneration by implantation of EC in the affected site, without the need for bone grafts, using titanium as a vehicle. The process of cryopreservation is essential for the maintenance of cell cultures, since the cell line is frozen, it can be maintained in liquid nitrogen for an indefinite period and then thawed for therapeutic or experimental purposes. The aim of this study was to isolate a population of MSCs derived from the subendothelium of the umbilical vein human (MSCs-SUVH) to assess cytogenetic analysis by the possibility of appearance of chromosomal changes in two different situations: MSCs-SUVH regarding the process of cryopreservation and MSCs-SUVH grown on the surface of titanium. Flow cytometry analysis revealed that, this cell population was positive for the markers CD29, CD73 and CD90, but there was no expression of hematopoietic lineage markers, such as CD14, CD34 and CD45 and demonstrated capacity for osteogenic differentiation. The chromosomes obtained from the primary culture of MSCs-SUVH were analyzed by GTW banding technique, and results are described as guidelines to ISCN 2005. There was not the emergence of clonal chromosomal changes in the MSCs-SUVH in different situations analyzed. However one of the strings presented a balanced paracentric inversion, probably a cytogenetic constitutional alterations, which was present before and after the experimental situations that the MSCs-SUVH was submitted
Resumo:
The humanity reached a time of unprecedented technological development. Science has achieved and continues to achieve technologies that allowed increasingly to understand the universe and the laws which govern it, and also try to coexist without destroying the planet we live on. One of the main challenges of the XXI century is to seek and increase new sources of clean energy, renewable and able to sustain our growth and lifestyle. It is the duty of every researcher engage and contribute in this race of energy. In this context, wind power presents itself as one of the great promises for the future of electricity generation . Despite being a bit older than other sources of renewable energy, wind power still presents a wide field for improvement. The development of new techniques for control of the generator along with the development of research laboratories specializing in wind generation are one of the key points to improve the performance, efficiency and reliability of the system. Appropriate control of back-to-back converter scheme allows wind turbines based on the doubly-fed induction generator to operate in the variable-speed mode, whose benefits include maximum power extraction, reactive power injection and mechanical stress reduction. The generator-side converter provides control of active and reactive power injected into the grid, whereas the grid-side converter provides control of the DC link voltage and bi-directional power flow. The conventional control structure uses PI controllers with feed-forward compensation of cross-coupling dq terms. This control technique is sensitive to model uncertainties and the compensation of dynamic dq terms results on a competing control strategy. Therefore, to overcome these problems, it is proposed in this thesis a robust internal model based state-feedback control structure in order to eliminate the cross-coupling terms and thereby improve the generator drive as well as its dynamic behavior during sudden changes in wind speed. It is compared the conventional control approach with the proposed control technique for DFIG wind turbine control under both steady and gust wind conditions. Moreover, it is also proposed in this thesis an wind turbine emulator, which was developed to recreate in laboratory a realistic condition and to submit the generator to several wind speed conditions.