84 resultados para Computação aplicada
Resumo:
E-learning, which refers to the use of Internet-related technologies to improve knowledge and learning, has emerged as a complementary form of education, bringing advantages such as increased accessibility to information, personalized learning, democratization of education and ease of update, distribution and standardization of the content. In this sense, this paper aims to develop a tool, named ISE-SPL, whose purpose is the automatic generation of E-learning systems for medical education, making use of concepts of Software Product Lines. It consists of an innovative methodology for medical education that aims to assist professors of healthcare in their teaching through the use of educational technologies, all based on computing applied to healthcare (Informatics in Health). The tests performed to validate the ISE-SPL were divided into two stages: the first was made by using a software analysis tool similar to ISE-SPL, called SPLOT and the second was performed through usability questionnaires to healthcare professors who used ISESPL. Both tests showed positive results, proving it to be an efficient tool for generation of E-learning software and useful for professors in healthcare
Resumo:
This work present a interval approach to deal with images with that contain uncertainties, as well, as treating these uncertainties through morphologic operations. Had been presented two intervals models. For the first, is introduced an algebraic space with three values, that was constructed based in the tri-valorada logic of Lukasiewiecz. With this algebraic structure, the theory of the interval binary images, that extends the classic binary model with the inclusion of the uncertainty information, was introduced. The same one can be applied to represent certain binary images with uncertainty in pixels, that it was originated, for example, during the process of the acquisition of the image. The lattice structure of these images, allow the definition of the morphologic operators, where the uncertainties are treated locally. The second model, extend the classic model to the images in gray levels, where the functions that represent these images are mapping in a finite set of interval values. The algebraic structure belong the complete lattices class, what also it allow the definition of the elementary operators of the mathematical morphology, dilation and erosion for this images. Thus, it is established a interval theory applied to the mathematical morphology to deal with problems of uncertainties in images
Resumo:
The frequency selective surfaces, or FSS (Frequency Selective Surfaces), are structures consisting of periodic arrays of conductive elements, called patches, which are usually very thin and they are printed on dielectric layers, or by openings perforated on very thin metallic surfaces, for applications in bands of microwave and millimeter waves. These structures are often used in aircraft, missiles, satellites, radomes, antennae reflector, high gain antennas and microwave ovens, for example. The use of these structures has as main objective filter frequency bands that can be broadcast or rejection, depending on the specificity of the required application. In turn, the modern communication systems such as GSM (Global System for Mobile Communications), RFID (Radio Frequency Identification), Bluetooth, Wi-Fi and WiMAX, whose services are highly demanded by society, have required the development of antennas having, as its main features, and low cost profile, and reduced dimensions and weight. In this context, the microstrip antenna is presented as an excellent choice for communications systems today, because (in addition to meeting the requirements mentioned intrinsically) planar structures are easy to manufacture and integration with other components in microwave circuits. Consequently, the analysis and synthesis of these devices mainly, due to the high possibility of shapes, size and frequency of its elements has been carried out by full-wave models, such as the finite element method, the method of moments and finite difference time domain. However, these methods require an accurate despite great computational effort. In this context, computational intelligence (CI) has been used successfully in the design and optimization of microwave planar structures, as an auxiliary tool and very appropriate, given the complexity of the geometry of the antennas and the FSS considered. The computational intelligence is inspired by natural phenomena such as learning, perception and decision, using techniques such as artificial neural networks, fuzzy logic, fractal geometry and evolutionary computation. This work makes a study of application of computational intelligence using meta-heuristics such as genetic algorithms and swarm intelligence optimization of antennas and frequency selective surfaces. Genetic algorithms are computational search methods based on the theory of natural selection proposed by Darwin and genetics used to solve complex problems, eg, problems where the search space grows with the size of the problem. The particle swarm optimization characteristics including the use of intelligence collectively being applied to optimization problems in many areas of research. The main objective of this work is the use of computational intelligence, the analysis and synthesis of antennas and FSS. We considered the structures of a microstrip planar monopole, ring type, and a cross-dipole FSS. We developed algorithms and optimization results obtained for optimized geometries of antennas and FSS considered. To validate results were designed, constructed and measured several prototypes. The measured results showed excellent agreement with the simulated. Moreover, the results obtained in this study were compared to those simulated using a commercial software has been also observed an excellent agreement. Specifically, the efficiency of techniques used were CI evidenced by simulated and measured, aiming at optimizing the bandwidth of an antenna for wideband operation or UWB (Ultra Wideband), using a genetic algorithm and optimizing the bandwidth, by specifying the length of the air gap between two frequency selective surfaces, using an optimization algorithm particle swarm
Resumo:
The incorporate of industrial automation in the medical are requires mechanisms to safety and efficient establishment of communication between biomedical devices. One solution to this problem is the MP-HA (Multicycles Protocol to Hospital Automation) that down a segmented network by beds coordinated by an element called Service Provider. The goal of this work is to model this Service Provider and to do performance analysis of the activities executed by in establishment and maintenance of hospital networks
Resumo:
The Methods for compensation of harmonic currents and voltages have been widely used since these methods allow to reduce to acceptable levels the harmonic distortion in the voltages or currents in a power system, and also compensate reactive. The reduction of harmonics and reactive contributes to the reduction of losses in transmission lines and electrical machinery, increasing the power factor, reduce the occurrence of overvoltage and overcurrent. The active power filter is the most efficient method for compensation of harmonic currents and voltages. The active power filter is necessary to use current and voltage controllers loop. Conventionally, the current and voltage control loop of active filter has been done by proportional controllers integrative. This work, investigated the use of a robust adaptive control technique on the shunt active power filter current and voltage control loop to increase robustness and improve the performance of active filter to compensate for harmonics. The proposed control scheme is based on a combination of techniques for adaptive control pole placement and variable structure. The advantages of the proposed method over conventional ones are: lower total harmonic distortion, more flexibility, adaptability and robustness to the system. Moreover, the proposed control scheme improves the performance and improves the transient of active filter. The validation of the proposed technique was verified initially by a simulation program implemented in C++ language and then experimental results were obtained using a prototype three-phase active filter of 1 kVA
Resumo:
In practically all vertical markets and in every region of the planet, loyalty marketers have adopted the tactic of recognition and reward to identify, maintain and increase the yield of their customers. Several strategies have been adopted by companies, and the most popular among them is the loyalty program, which displays a loyalty club to manage these rewards. But the problem with loyalty programs is that customer identification and transfer of loyalty points are made in a semiautomatic. Aiming at this, this paper presents a master's embedded business automation solution called e-Points. The goal of e-Points is munir clubs allegiances with fully automated tooling technology to identify customers directly at the point of sales, ensuring greater control over the loyalty of associate members. For this, we developed a hardware platform with embedded system and RFID technology to be used in PCs tenant, a smart card to accumulate points with every purchase and a web server, which will provide services of interest to retailers and customers membership to the club
Resumo:
Nowadays, optic fiber is one of the most used communication methods, mainly due to the fact that the data transmission rates of those systems exceed all of the other means of digital communication. Despite the great advantage, there are problems that prevent full utilization of the optical channel: by increasing the transmission speed and the distances involved, the data is subjected to non-linear inter symbolic interference caused by the dispersion phenomena in the fiber. Adaptive equalizers can be used to solve this problem, they compensate non-ideal responses of the channel in order to restore the signal that was transmitted. This work proposes an equalizer based on artificial neural networks and evaluates its performance in optical communication systems. The proposal is validated through a simulated optic channel and the comparison with other adaptive equalization techniques
Resumo:
Este trabalho apresenta uma extensão do provador haRVey destinada à verificação de obrigações de prova originadas de acordo com o método B. O método B de desenvolvimento de software abrange as fases de especificação, projeto e implementação do ciclo de vida do software. No contexto da verificação, destacam-se as ferramentas de prova Prioni, Z/EVES e Atelier-B/Click n Prove. Elas descrevem formalismos com suporte à checagem satisfatibilidade de fórmulas da teoria axiomática dos conjuntos, ou seja, podem ser aplicadas ao método B. A checagem de SMT consiste na checagem de satisfatibilidade de fórmulas da lógica de primeira-ordem livre de quantificadores dada uma teoria decidível. A abordagem de checagem de SMT implementada pelo provador automático de teoremas haRVey é apresentada, adotando-se a teoria dos vetores que não permite expressar todas as construções necessárias às especificações baseadas em conjuntos. Assim, para estender a checagem de SMT para teorias dos conjuntos destacam-se as teorias dos conjuntos de Zermelo-Frankel (ZFC) e de von Neumann-Bernays-Gödel (NBG). Tendo em vista que a abordagem de checagem de SMT implementada no haRVey requer uma teoria finita e pode ser estendida para as teorias nãodecidíveis, a teoria NBG apresenta-se como uma opção adequada para a expansão da capacidade dedutiva do haRVey à teoria dos conjuntos. Assim, através do mapeamento dos operadores de conjunto fornecidos pela linguagem B a classes da teoria NBG, obtem-se uma abordagem alternativa para a checagem de SMT aplicada ao método B
Resumo:
In this work will applied the technique of Differential Cryptanalysis, introduced in 1990 by Biham and Shamir, on Papílio s cryptosystem, developed by Karla Ramos, to test and most importantly, to prove its relevance to other block ciphers such as DES, Blowfish and FEAL-N (X). This technique is based on the analysis of differences between plaintext and theirs respective ciphertext, in search of patterns that will assist in the discovery of the subkeys and consequently in the discovery of master key. These differences are obtained by XOR operations. Through this analysis, in addition to obtaining patterns of Pap´ılio, it search to obtain also the main characteristics and behavior of Papilio throughout theirs 16 rounds, identifying and replacing when necessary factors that can be improved in accordance with pre-established definitions of the same, thus providing greater security in the use of his algoritm
Resumo:
This research studies the application of syntagmatic analysis of written texts in the language of Brazilian Portuguese as a methodology for the automatic creation of extractive summaries. The automation of abstracts, while linked to the area of natural language processing (PLN) is studying ways the computer can autonomously construct summaries of texts. For this we use as presupposed the idea that switch to the computer the way a language is structured, in our case the Brazilian Portuguese, it will help in the discovery of the most relevant sentences, and consequently build extractive summaries with higher informativeness. In this study, we propose the definition of a summarization method that automatically perform the syntagmatic analysis of texts and through them, to build an automatic summary. The phrases that make up the syntactic structures are then used to analyze the sentences of the text, so the count of these elements determines whether or not a sentence will compose the summary to be generated
Resumo:
The conventional control schemes applied to Shunt Active Power Filters (SAPF) are Harmonic extractor-based strategies (HEBSs) because their effectiveness depends on how quickly and accurately the harmonic components of the nonlinear loads are identified. The SAPF can be also implemented without the use of the load harmonic extractors. In this case, the harmonic compensating term is obtained from the system active power balance. These systems can be considered as balanced-energy-based schemes (BEBSs) and their performance depends on how fast the system reaches the equilibrium state. In this case, the phase currents of the power grid are indirectly regulated by double sequence controllers with two degrees of freedom, where the internal model principle is employed to avoid reference frame transformation. Additionally the DSC controller presents robustness when the SAPF is operating under unbalanced conditions. Furthermore, SAPF implemented without harmonic detection schemes compensate simultaneously harmonic distortion and reactive power of the load. Their compensation capabilities, however, are limited by the SAPF power converter rating. Such a restriction can be minimized if the level of the reactive power correction is managed. In this work an estimation scheme for determining the filter currents is introduced to manage the compensation of reactive power. Experimental results are shown for demonstrating the performance of the proposed SAPF system.
Resumo:
Generation systems, using renewable sources, are becoming increasingly popular due to the need for increased use of electricity. Currently, renewables sources have a role to cooperate with conventional generation, due to the system limitation in delivering the required power, the need for reduction of unwanted effects from sources that use fossil fuels (pollution) and the difficulty of building new transmission and/or distribution lines. This cooperation takes place through distributed generation. Therefore, this work proposes a control strategy for the interconnection of a PV (Photovoltaic) system generation distributed with a three-phase power grid through a connection filter the type LCL. The compensation of power quality at point of common coupling (PCC) is performed ensuring that the mains supply or consume only active power and that his currents have low distorcion. Unlike traditional techniques which require schemes for harmonic detection, the technique performs the harmonic compensation without the use of this schemes, controlling the output currents of the system in an indirect way. So that there is effective control of the DC (Direct Current) bus voltage is used the robust controller mode dual DSMPI (Dual-Sliding Mode-Proportional Integral), that behaves as a sliding mode controller SM-PI (Sliding Mode-Proportional Integral) during the transition and like a conventional PI (Proportional Integral) in the steady-state. For control of current is used to repetitive control strategy, which are used double sequence controllers (DSC) tuned to the fundamental component, the fifth and seventh harmonic. The output phase current are aligned with the phase angle of the utility voltage vector obtained from the use of a SRF-PLL (Synchronous Reference Frame Phase-Locked-Loop). In order to obtain the maximum power from the PV array is used a MPPT (Maximum Power Point Tracking) algorithm without the need for adding sensors. Experimental results are presented to demonstrate the effectiveness of the proposed control system.
Resumo:
This work proposes a new autonomous navigation strategy assisted by genetic algorithm with dynamic planning for terrestrial mobile robots, called DPNA-GA (Dynamic Planning Navigation Algorithm optimized with Genetic Algorithm). The strategy was applied in environments - both static and dynamic - in which the location and shape of the obstacles is not known in advance. In each shift event, a control algorithm minimizes the distance between the robot and the object and maximizes the distance from the obstacles, rescheduling the route. Using a spatial location sensor and a set of distance sensors, the proposed navigation strategy is able to dynamically plan optimal collision-free paths. Simulations performed in different environments demonstrated that the technique provides a high degree of flexibility and robustness. For this, there were applied several variations of genetic parameters such as: crossing rate, population size, among others. Finally, the simulation results successfully demonstrate the effectiveness and robustness of DPNA-GA technique, validating it for real applications in terrestrial mobile robots.
Resumo:
This work proposes a new autonomous navigation strategy assisted by genetic algorithm with dynamic planning for terrestrial mobile robots, called DPNA-GA (Dynamic Planning Navigation Algorithm optimized with Genetic Algorithm). The strategy was applied in environments - both static and dynamic - in which the location and shape of the obstacles is not known in advance. In each shift event, a control algorithm minimizes the distance between the robot and the object and maximizes the distance from the obstacles, rescheduling the route. Using a spatial location sensor and a set of distance sensors, the proposed navigation strategy is able to dynamically plan optimal collision-free paths. Simulations performed in different environments demonstrated that the technique provides a high degree of flexibility and robustness. For this, there were applied several variations of genetic parameters such as: crossing rate, population size, among others. Finally, the simulation results successfully demonstrate the effectiveness and robustness of DPNA-GA technique, validating it for real applications in terrestrial mobile robots.
Resumo:
Conceitua Realidade Aumentada do ponto de vista histórico de vários autores e como surgiu esse segmento através da evolução tecnológica até os dias atuais. Aborda seu funcionamento, como também, seus sistemas e aplicações em diversos campos de pesquisas e estudos científicos. Diferencia Realidade Aumentada de Realidade Virtual, visando melhor esclarecimento entre ambas na intenção de descaracterizá-las com uma única “realidade”. Apresenta a Realidade Aumentada e sua aplicação dentro de um contexto de uma unidade de informação, promovendo uma melhor interação com os usuários e as adaptações pelas quais as bibliotecas terão que passar futuramente para se adequarem a “explosão” tecnológica. Descreve o funcionamento da biblioteca ARToolKIT, baseada em RA e suas principais etapas de funcionamento para visualização de objetos virtuais em 3D. Exemplifica os benefícios que uma unidade de informação, que utiliza Realidade Aumentada, promove aos usuários portadores de deficiência, além de sua inclusão no meio digital e sua inserção no mercado de trabalho