41 resultados para Vector autoregression (VAR)

em Repositório digital da Fundação Getúlio Vargas - FGV


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis at hand adds to the existing literature by investigating the relationship between economic growth and outward foreign direct investments (OFDI) on a set of 16 emerging countries. Two different econometric techniques are employed: a panel data regression analysis and a time-series causality analysis. Results from the regression analysis indicate a positive and significant correlation between OFDI and economic growth. Additionally, the coefficient for the OFDI variable is robust in the sense specified by the Extreme Bound Analysis (EBA). On the other hand, the findings of the causality analysis are particularly heterogeneous. The vector autoregression (VAR) and the vector error correction model (VECM) approaches identify unidirectional Granger causality running either from OFDI to GDP or from GDP to OFDI in six countries. In four economies causality among the two variables is bidirectional, whereas in five countries no causality relationship between OFDI and GDP seems to be present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that cointegration between the level of two variables (e.g. prices and dividends) is a necessary condition to assess the empirical validity of a present-value model (PVM) linking them. The work on cointegration,namelyon long-run co-movements, has been so prevalent that it is often over-looked that another necessary condition for the PVM to hold is that the forecast error entailed by the model is orthogonal to the past. This amounts to investigate whether short-run co-movememts steming from common cyclical feature restrictions are also present in such a system. In this paper we test for the presence of such co-movement on long- and short-term interest rates and on price and dividend for the U.S. economy. We focuss on the potential improvement in forecasting accuracies when imposing those two types of restrictions coming from economic theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper has two original contributions. First, we show that the present value model (PVM hereafter), which has a wide application in macroeconomics and fi nance, entails common cyclical feature restrictions in the dynamics of the vector error-correction representation (Vahid and Engle, 1993); something that has been already investigated in that VECM context by Johansen and Swensen (1999, 2011) but has not been discussed before with this new emphasis. We also provide the present value reduced rank constraints to be tested within the log-linear model. Our second contribution relates to forecasting time series that are subject to those long and short-run reduced rank restrictions. The reason why appropriate common cyclical feature restrictions might improve forecasting is because it finds natural exclusion restrictions preventing the estimation of useless parameters, which would otherwise contribute to the increase of forecast variance with no expected reduction in bias. We applied the techniques discussed in this paper to data known to be subject to present value restrictions, i.e. the online series maintained and up-dated by Shiller. We focus on three different data sets. The fi rst includes the levels of interest rates with long and short maturities, the second includes the level of real price and dividend for the S&P composite index, and the third includes the logarithmic transformation of prices and dividends. Our exhaustive investigation of several different multivariate models reveals that better forecasts can be achieved when restrictions are applied to them. Moreover, imposing short-run restrictions produce forecast winners 70% of the time for target variables of PVMs and 63.33% of the time when all variables in the system are considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a sequence of nested multivariate models that are VAR-based, we discuss different layers of restrictions imposed by present-value models (PVM hereafter) on the VAR in levels for series that are subject to present-value restrictions. Our focus is novel - we are interested in the short-run restrictions entailed by PVMs (Vahid and Engle, 1993, 1997) and their implications for forecasting. Using a well-known database, kept by Robert Shiller, we implement a forecasting competition that imposes different layers of PVM restrictions. Our exhaustive investigation of several different multivariate models reveals that better forecasts can be achieved when restrictions are applied to the unrestricted VAR. Moreover, imposing short-run restrictions produces forecast winners 70% of the time for the target variables of PVMs and 63.33% of the time when all variables in the system are considered.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Using vector autoregressive (VAR) models and Monte-Carlo simulation methods we investigate the potential gains for forecasting accuracy and estimation uncertainty of two commonly used restrictions arising from economic relationships. The Örst reduces parameter space by imposing long-term restrictions on the behavior of economic variables as discussed by the literature on cointegration, and the second reduces parameter space by imposing short-term restrictions as discussed by the literature on serial-correlation common features (SCCF). Our simulations cover three important issues on model building, estimation, and forecasting. First, we examine the performance of standard and modiÖed information criteria in choosing lag length for cointegrated VARs with SCCF restrictions. Second, we provide a comparison of forecasting accuracy of Ötted VARs when only cointegration restrictions are imposed and when cointegration and SCCF restrictions are jointly imposed. Third, we propose a new estimation algorithm where short- and long-term restrictions interact to estimate the cointegrating and the cofeature spaces respectively. We have three basic results. First, ignoring SCCF restrictions has a high cost in terms of model selection, because standard information criteria chooses too frequently inconsistent models, with too small a lag length. Criteria selecting lag and rank simultaneously have a superior performance in this case. Second, this translates into a superior forecasting performance of the restricted VECM over the VECM, with important improvements in forecasting accuracy ñreaching more than 100% in extreme cases. Third, the new algorithm proposed here fares very well in terms of parameter estimation, even when we consider the estimation of long-term parameters, opening up the discussion of joint estimation of short- and long-term parameters in VAR models.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties for a lack of parsimony, as well as the traditional ones. We suggest a new procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties. In order to compute the fit of each model, we propose an iterative procedure to compute the maximum likelihood estimates of parameters of a VAR model with short-run and long-run restrictions. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank, relative to the commonly used procedure of selecting the lag-length only and then testing for cointegration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties as well as the traditional ones. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank using our proposed procedure, relative to an unrestricted VAR or a cointegrated VAR estimated by the commonly used procedure of selecting the lag-length only and then testing for cointegration. Two empirical applications forecasting Brazilian inflation and U.S. macroeconomic aggregates growth rates respectively show the usefulness of the model-selection strategy proposed here. The gains in different measures of forecasting accuracy are substantial, especially for short horizons.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties as well as the traditional ones. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank using our proposed procedure, relative to an unrestricted VAR or a cointegrated VAR estimated by the commonly used procedure of selecting the lag-length only and then testing for cointegration. Two empirical applications forecasting Brazilian in ation and U.S. macroeconomic aggregates growth rates respectively show the usefulness of the model-selection strategy proposed here. The gains in di¤erent measures of forecasting accuracy are substantial, especially for short horizons.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. A Monte Carlo study explores the finite sample performance of this procedure and evaluates the forecasting accuracy of models selected by this procedure. Two empirical applications confirm the usefulness of the model selection procedure proposed here for forecasting.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Através de dados financeiros de ações negociadas na Bolsa de Valores de São Paulo, testa-se a validade do modelo de valor presente (MVP) com retornos esperados constantes ao longo do tempo (Campbell & Schiller, 1987). Esse modelo relaciona o preço de uma ação ao seu esperado fluxo de dividendos trazido a valor presente a uma taxa de desconto constante ao longo do tempo. Por trás desse modelo está a hipótese de expectativas racionais, bem como a hipótese de previsibilidade de preço futuro do ativo, através da inserção dos dividendos esperados no período seguinte. Nesse trabalho é realizada uma análise multivariada num arcabouço de séries temporais, utilizando a técnica de Auto-Regressões Vetoriais. Os resultados empíricos apresentados, embora inconclusivos, permitem apenas admitir que não é possível rejeitar completamente a hipótese de expectativas racionais para os ativos brasileiros.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vivemos um momento de grande crescimento da construção naval no mundo, que é impulsionado pelo crescimento do comércio entre as nações, em um mundo cada vez mais globalizado. O mesmo se repete no Brasil. O principal objetivo deste trabalho é propor uma metodologia para o cálculo objetivo do valor a ser garantido ao cliente da indústria naval, de modo a criar os incentivos econômicos corretos para os artífices da relação principal-agente. Inicialmente descreverei a Tecnologia da Construção Naval e os problemas econômicos que encontramos, passando a seguir a expor o Mercado Naval, estando aí incluídos o lado consumidor e os produtores de navios, sendo eles nacionais ou internacionais. Finalmente passaremos ao detalhamento da solução de seguro proposta, com a formalização do tipo de seguro, nível de cobertura e monitoramento. Para tal utilizaremos a metodologia de Vector-Autorregression combinada a uma simulação de Monte Carlo. Os resultados encontrados são checados e apontamos os caminhos para aperfeiçoar a metodologia e possíveis usos alternativos para ela.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work seeks to investigate the dynamics of capital account liberalization and its impact on short run capital flows to Brazil in the period of 1995-2002, considering different segments such as the monetary, derivative and equity markets. This task is pursued by developing a comparative study of financial flows and examining how it is affected by the uncovered interest parity, country risk and the legislation on portfolio capital flows. The empirical framework is based on a vector autoregressive (VAR) analysis using impulse-response functions, variance decomposition and Granger causality tests. In general terms the results indicate a crucial role played by the uncovered interest parity and the country risk to explain portfolio flows, and a less restrictive (more liberalized) legislation is not significant to attract such flows.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We use a factor-augmented vector autoregression (FAVAR) to estimate the impact of monetary policy shocks on the cross-section of stock returns. Our FAVAR combines unobserved factors extracted from a large set of nancial and macroeconomic indicators with the Federal Funds rate. We nd that monetary policy shocks have heterogeneous e ects on the crosssection of stock returns. These e ects are very well explained by the degree of external nance dependence, as well as by other sectoral characteristics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Na última década, a economia brasileira apresentou-se estável adquirindo maior credibilidade mundial. Dentre as opções de investimento, estão os mercados de ações e de títulos públicos. O portfolio de investimento dos agentes é determinado de acordo com os retornos dos ativos e/ou aversão ao risco, e a diversificação é importante para mitigar risco. Dessa forma, o objetivo principal do presente trabalho é estudar a inter-relação entre os mercados de títulos públicos e ações, avaliando aspectos de liquidez e quais variáveis representariam melhor esta relação, verificando também como respondem a um choque (surpresa econômica), pois a percepção de alteração do cenário econômico, ou variações de fluxo financeiro, pode alterar/inverter as relações entre esses mercados. Para isso, estimou-se modelos de vetores auto-regressivos - VAR, com variáveis de retorno, volatilidade e volume negociado para cada um dos mercados em combinações diferentes das variáveis representativas, visando encontrar o(s) modelo(s) mais descritivo(s) das inter-relações entre os mercados, dado a amostra utilizada, para aplicar a dummy de surpresa econômica. Em estudo semelhante Chordia, Sarkar e Subrahmanyam (2005) concluiram que choques de liquidez e volatilidade são positivamente correlacionado nos mercados de ações e títulos públicos em horizontes diários, indicando que os choques de liquidez e volatilidade são muitas vezes de natureza sistêmica. O mesmo não foi observado para a proxy de liquidez utilizada na amostra brasileira. Um resultado interessante a ser ressaltado deve-se as séries SMLL11 (índice Small Caps) e IDkAs (índice de duração constante ANBIMA) não possuírem relação de causalidade de Granger com as demais séries, mas os retornos dos IDkAs Granger causam os retornos do índice SMLL11. Por fim, o choque de surpresa econômica não se mostra explicativo sobre qualquer alteração nas inter-relações entre os mercados de títulos públicos e ações.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este trabalho apresenta um estudo do impacto das negociações algorítmicas no processo de descoberta de preços no mercado de câmbio. Foram utilizados dados de negociação de alta frequência para contratos futuros de reais por dólar (DOL), negociados na Bolsa de Valores de São Paulo no período de janeiro a junho de 2013. No intuito de verificar se as estratégias algorítmicas de negociação são mais dependentes do que as negociações não algorítmicas, foi examinada a frequência em que algoritmos negociam entre si e comparou-se a um modelo benchmark que produz probabilidades teóricas para diferentes tipos de negociadores. Os resultados obtidos para as negociações minuto a minuto apresentam evidências de que as ações e estratégias de negociadores algorítmicos parecem ser menos diversas e mais dependentes do que aquelas realizadas por negociadores não algorítmicos. E para modelar a interação entre a autocorrelação serial dos retornos e negociações algorítmicas, foi estimado um vetor autorregressivo de alta frequência (VAR) em sua forma reduzida. As estimações mostram que as atividades dos algoritmos de negociação causam um aumento na autocorrelação dos retornos, indicando que eles podem contribuir para o aumento da volatilidade.