Impacto das negociações algorítmicas de alta frequência no mercado futuro de dólar
Contribuinte(s) |
Pereira, Pedro L. Valls Marçal, Emerson Fernandes Hotta, Luiz Koodi |
---|---|
Data(s) |
06/03/2014
06/03/2014
10/02/2014
|
Resumo |
Este trabalho apresenta um estudo do impacto das negociações algorítmicas no processo de descoberta de preços no mercado de câmbio. Foram utilizados dados de negociação de alta frequência para contratos futuros de reais por dólar (DOL), negociados na Bolsa de Valores de São Paulo no período de janeiro a junho de 2013. No intuito de verificar se as estratégias algorítmicas de negociação são mais dependentes do que as negociações não algorítmicas, foi examinada a frequência em que algoritmos negociam entre si e comparou-se a um modelo benchmark que produz probabilidades teóricas para diferentes tipos de negociadores. Os resultados obtidos para as negociações minuto a minuto apresentam evidências de que as ações e estratégias de negociadores algorítmicos parecem ser menos diversas e mais dependentes do que aquelas realizadas por negociadores não algorítmicos. E para modelar a interação entre a autocorrelação serial dos retornos e negociações algorítmicas, foi estimado um vetor autorregressivo de alta frequência (VAR) em sua forma reduzida. As estimações mostram que as atividades dos algoritmos de negociação causam um aumento na autocorrelação dos retornos, indicando que eles podem contribuir para o aumento da volatilidade. This work presents a study of the impact of algorithmic tradings in the process of price discovery in the foreing exchange market. It was used high-frequency data for the U.S. Dollar Futures Contract trade in the São Paulo Stock Exchange, from January 2013 to June 2013. In order to verify if algorithmic trading strategies are more dependent than those of non-algorithmic tradings, it was examined the frequency at which algorithmic traders negotiate with each other and compared it to a benchmark model that produces theorical probabilities for different types of traders. The results obtained for these minute by minute tradings present evidence that actions and strategies for algorithmic traders appear to be less diverse and more dependent than those held by non-algorithmic traders. And it was estimated a reduced form of a high-frequency vector autoregressive (VAR) to model the interaction between serial autocorrelations of returns and algorithmic trading. The estimates show that algorithmic trading activities cause an increase in the autocorrelations of returns, indicating they may contribute to a rise in the volatility. |
Identificador | |
Idioma(s) |
pt_BR |
Palavras-Chave | #algoritmos de negociação #dados de alta frequência |
Tipo |
Dissertation |