51 resultados para open robot control

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a control approach based on reinforcement learning is present for a robot to complete a dynamic task in an unknown environment. First, a temporal difference-based reinforcement learning algorithm and its evaluation function are used to make the robot learn with its trials and errors as well as experiences. Second, the simulation are carried out to adjust the parameters of the learning algorithm and determine an optimal policy by using the models of a robot. Last, the effectiveness of the present approach is demonstrated by balancing an inverse pendulum in the unknown environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An overview is given of the design and implementation of a platform for fast external sensor integration in an industrial robot system called ABB S4CPlus. As an application and motivating example, the implementation of force-controlled grinding and deburring within the AUTOFETT-project is discussed. Experiences from industrial usage of the fully developed prototype confirms the appropriateness of the design choices, thus also confirming the fact that control and software need to be tightly integrated. The new sensor can be used for the prototyping and development of a wide variety of new applications

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a visual feedback control approach based on neural networks is presented for a robot with a camera installed on its end-effector to trace an object in an unknown environment. First, the one-to-one mapping relations between the image feature domain of the object to the joint angle domain of the robot are derived. Second, a method is proposed to generate a desired trajectory of the robot by measuring the image feature parameters of the object. Third, a multilayer neural network is used for off-line learning of the mapping relations so as to produce on-line the reference inputs for the robot. Fourth, a learning controller based on a multilayer neural network is designed for realizing the visual feedback control of the robot. Last, the effectiveness of the present approach is verified by tracing a curved line using a 6-degrees-of-freedom robot with a CCD camera installed on its end-effector. The present approach does not necessitate the tedious calibration of the CCD camera and the complicated coordinate transformations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Haptic human-machine interfaces and similar techniques to enhancing human-robotic interaction offer significant potential over conventional approaches. This work considers achieving intuitive motion control of a tracked mobile robotic platform utilising a 3D virtual haptic cone. The 3D haptic cone extends upon existing approaches by introducing of a third dimension to the haptic control surface. It is suggested that this approach improves upon existing methods by providing the human operator with an intuitive method for issuing vehicle motion commands whilst still facilitating simultaneous real-time haptic augmentation regarding the task at hand. The presented approach is considered in the context of mobile robotic teleoperation however offers potential across many applications. Using the 2D haptic control surface as a benchmark, preliminary evaluation of the 3D haptic cone approach demonstrates a significant improvement in the ability to command the robot to cease motion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Haptic human-machine interfaces and similar techniques to enhancing human-robotic interaction offer significant potential over conventional approaches. This work considers achieving intuitive motion control of a tracked mobile robotic platform utilising a 3D virtual haptic cone. The 3D haptic cone extends upon existing approaches by introducing of a third dimension to the haptic control surface. It is suggested that this approach improves upon existing methods by providing the human operator with an intuitive method for issuing vehicle motion commands whilst still facilitating simultaneous real-time haptic augmentation regarding the task at hand. The presented approach is considered in the context of mobile robotic teleoperation however offers potential across many applications. Using the 2D haptic control surface as a benchmark, preliminary evaluation of the 3D haptic cone approach demonstrates a significant improvement in the ability to command the robot to cease motion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Haptic human-machine interfaces and interaction techniques have been shown to offer advantages over conventional approaches. This work introduces the 3D virtual haptic cone with the aim of improving human remote control of a vehicle's motion. The 3D cone introduces a third dimension to the haptic control surface over existing approaches. This approach improves upon existing methods by providing the human operator with an intuitive method for issuing vehicle motion commands whilst simultaneously receiving real-time haptic information from the remote system. The presented approach offers potential across many applications, and as a case study, this work considers the approach in the context of mobile robot motion control. The performance of the approach in providing the operator with improved motion controllability is evaluated and the performance improvement determined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, a multi-agent based model for a robotic assembly system is presented. Firstly, an organization model is used to construct the multi-agent model. Secondly, a dynamic self-organizing method is then put forward for the multi-agent robotic system to bid and contract the operations. Thirdly, a real multi-agent robotic system is built and assembly experiments are carried out. Finally, the experimental results confirm that the present multi-agent robotic system has flexibility, adaptation and stability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes an automated trimming system of large glass fiber reinforced plastic (GFRP) using an omni-directional wheeled mobile robot (WMR) and its path control method. In trimming GFRP parts, much glass fiber and plastic powder dust occur and it becomes bad visible in environment. It is necessary to correct dead-reckoning errors of the WMR in order to control its moving path. We have discussed an external correction method of the dead-reckoning errors for the WMR using ultrasonic sensor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Control of tele-operated remote robot’s is nothing new; the public was introduced to this 'new' field in 1986 when the Chernobyl cleanup began. Pictures of weird and wonderful robotic workers pouring concrete or moving rubble flooded the world. Integration of force feedback or 'haptics' to remote robot's is a new development and one that is likely to make a big difference in man-machine interaction. Development of haptic capable tele-operation schema is a challenge. Often platform specific software is developed for one off tasks. This research focussed on the development of an open software platform for haptic control of multiple remote robotic platforms. The software utilises efficient server/client architecture for low data latency, while efficiently performing required kinematic transforms and data manipulation in real time. A description of the algorithm, software interface and hardware is presented in this paper. Preliminary results are encouraging as haptic control has been shown to greatly enhances remote positioning tasks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper studies the integral terminal sliding mode cooperative control of multi-robot networks. Here, we first propose an integral terminal sliding mode surface for a class of first order systems. Then, we prove that finite time consensus tracking of multi-robot networks can be achieved on this integral terminal sliding mode surface. Simulation results are presented to validate the analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A traffic control device in the form of a humanoid character robot, doll or dummy is used to warn driver of danger ahead on the road. The device can be used on roads, streets and in other sites where there are moving vehicles. The robotic device informs drivers of impending danger by moving its arms and sounding an acoustic alarm. In this way the robot can simulate a policeman or road flagging operator. The device may also include speed detection and preferably speed indication means. The robot may make decisions based on the detected speed of a vehicle and the limit for the area in operating the arms and sound warning means. The robot may also be equipped with a camera or video. The robot may also be controlled wirelessly.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper a 6-RRCRR parallel robot assisted minimally invasive surgery/microsurgery system (PRAMiSS) is introduced. Remote centre-of-motion (RCM) control algorithms of PRAMiSS suitable for minimally invasive surgery and microsurgery are also presented. The programmable RCM approach is implemented in order to achieve manipulation under the constraint of moving through the fixed penetration point. Having minimised the displacements of the mobile platform of the parallel micropositioning robot, the algorithms also apply orientation constraint to the instrument and prevent the tool tip to orient due to the robot movements during the manipulation. Experimental results are provided to verify accuracy and effectiveness of the proposed RCM control algorithms for minimally invasive surgery.