11 resultados para electron capture detection

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a new approach to detecting the scene change in the successive capture of photographs of a place within equal time interval. This method is based on a gray level histogram of every image. In this method the histogram of an image is processed to modify it for matching with the processed histogram of a reference image. The coefficient of correlation is taken as the measure of matching. As the method does not do any heavy signal processing, and the images are taken successively with a multi-shot digital still camera, it can be applied for real-time processing of such pictures for detection of a scene change. A multi-camera in multi-position approach is also shown to evaluate the change in scene simultaneously from different angles. Both multi-camera and single-camera approaches are compared in detecting a scene change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context : Designing an appropriate survey protocol requires understanding of how capture rates of target species may be influenced by factors other than on-ground abundance, such as weather conditions or seasonality. This is particularly relevant for ectotherms such as reptiles, as activity can be affected by environmental conditions such as ambient temperature.
Aims : The present study examines factors affecting capture success of reptiles in semi-arid environments of southern Australia, and addresses the following two main questions: (1) what is the influence of weather and seasonal factors on capture rates of reptiles, and (2) what are the implications for developing an effective protocol for reptile surveys?
Methods : We surveyed reptiles using pitfall traps in spring and summer of 2006/07 and 2007/08 at sites (n = 280) throughout the Murray Mallee region of south-eastern Australia. We used mixed-effect regression models to investigate the influence of seasonal and weather-related variables on species’ capture success.
Key results : Total captures of reptiles, and the likelihood of capture of 15 reptile species, increased with rising daily temperature. Greater numbers of individual species were captured during spring than in summer, even though temperatures were cooler. This probably reflects greater levels of activity associated with breeding. Several species were more likely to be captured when maximum or minimum daily temperatures exceeded a certain level (e.g. Lerista labialis, Delma australis, Nephrurus levis). Other factors, such as rainfall and moon phase, also influenced capture success of some species.
Conclusions : Surveys for reptiles in semi-arid environments are likely to capture the greatest diversity of species on warm days in late spring months, although surveys on hot days in summer will enhance detection of particular species (e.g. Morethia boulengeri, Varanus gouldii). We recommend trapping during periods with maximum temperatures exceeding 25–30C and minimum overnight temperatures of 15C. Finally, trapping during rainfall and full-moon events will maximise chances of encountering species sensitive to these variables (blind snakes and geckoes).
Implications : Selecting the most favourable seasonal and weather conditions will help ensure that reptile surveys maximise the likelihood of capturing the greatest diversity of reptiles, while minimising trap-effort required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high sensitivity that can be attained using a bienzymatic system and mediated by the redox polymer [Os(bpy)2ClPyCH2NHpoly(allylamine)] (Os-PAA), has been verified by on-line interfacing of a rotating bioreactor and continuous-flow/stopped-flow/continuous-flow processing. When the hydrogen peroxide formed by LOx layer reaches the inner layer, the electronic flow between the immobilized peroxidase and the electrode surface produces a current, proportional to lactate concentration. The determination of lactate was possible with a limit of detection of 5 nmol l−1 in the processing of as many as 30 samples per hour. This arrangement allows working in undiluted milk samples with a good stability and reproducibility. Horseradish peroxidase [EC 1.11.1.7] and Os-PAA were covalently immobilized on the glassy carbon electrode surface (upper cell body), lactate oxidase [EC 1.1.3.x] was immobilized on a disk that can be rotated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Binary signatures have been widely used to detect malicious software on the current Internet. However, this approach is unable to achieve the accurate identification of polymorphic malware variants, which can be easily generated by the malware authors using code generation engines. Code generation engines randomly produce varying code sequences but perform the same desired malicious functions. Previous research used flow graph and signature tree to identify polymorphic malware families. The key difficulty of previous research is the generation of precisely defined state machine models from polymorphic variants. This paper proposes a novel approach, using Hierarchical Hidden Markov Model (HHMM), to provide accurate inductive inference of the malware family. This model can capture the features of self-similar and hierarchical structure of polymorphic malware family signature sequences. To demonstrate the effectiveness and efficiency of this approach, we evaluate it with real malware samples. Using more than 15,000 real malware, we find our approach can achieve high true positives, low false positives, and low computational cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The analysis of human crowds has widespread uses from law enforcement to urban engineering and traffic management. All of these require a crowd to first be detected, which is the problem addressed in this paper. Given an image, the algorithm we propose segments it into crowd and non-crowd regions. The main idea is to capture two key properties of crowds: (i) on a narrow scale, its basic element should look like a human (only weakly so, due to low resolution, occlusion, clothing variation etc.), while (ii) on a larger scale, a crowd inherently contains repetitive appearance elements. Our method exploits this by building a pyramid of sliding windows and quantifying how “crowd-like” each level of the pyramid is using an underlying statistical model based on quantized SIFT features. The two aforementioned crowd properties are captured by the resulting feature vector of window responses, describing the degree of crowd-like appearance around an image location as the surrounding spatial extent is increased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epithelial cell adhesion molecule (EpCAM) is overexpressed in most solid cancers and is an ideal antigen for clinical applications in cancer diagnosis, prognosis, imaging, and therapy. Currently, most of the EpCAM-based diagnostic, prognostic, and therapeutic strategies rely on the anti-EpCAM antibody. However, the use of EpCAM antibody is restricted due to its large size and instability. In this study, we have successfully identified DNA aptamers that selectively bind human recombinant EpCAM protein. The aptamers can specifically recognize a number of live human cancer cells derived from breast, colorectal, and gastric cancers that express EpCAM but not bind to EpCAM-negative cells. Among the aptamer sequences identified, a hairpin-structured sequence SYL3 was optimized in length, resulting in aptamer sequence SYL3C. The Kd values of the SYL3C aptamer against breast cancer cell line MDA-MB-231 and gastric cancer cell line Kato III were found to be 38±9 and 67±8 nM, respectively, which are better than that of the full-length SYL3 aptamer. Flow cytometry analysis results indicated that the SYL3C aptamer was able to recognize target cancer cells from mixed cells in cell media. When used to capture cancer cells, up to 63% cancer cell capture efficiency was achieved with about 80% purity. With the advantages of small size, easy synthesis, good stability, high binding affinity, and selectivity, the DNA aptamers reported here against cancer biomarker EpCAM will facilitate the development of novel targeted cancer therapy, cancer cell imaging, and circulating tumor cell detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A strategy for a fast (ca. 20 min), specific, electrochemical immunoassay for the cardiac biomarker creatine kinase (CK) and the human cytokine interleukin 10 (IL10) has been developed in this paper. The polyaniline modified gold surface formed from electrochemical reduction of diazonium salt supplies a solid substrate to link the activated carboxylic acid groups from the antibodies, which were labelled with ferrocene. The direct electrochemistry of ferrocene allows the analysis of protein markers with good sensitivity. The creatine kinase sensor demonstrates limit of detection of 0.5 pg mL−1 in a physiological Krebs-Henseleit solution. The anti-IL10 antibody retained fluorescence activity after further coupling to ferrocene and covalent immobilization on to a gold electrode, showing a linear detection range for IL-10 from 0.001 ng mL−1 to 50 ng mL−1 in PBS. We attribute the high sensitivity to the well-controlled modified surface which results in end–on antibodies that can specifically capture the antigen with ease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the synthesis of platinum nanoparticle-reduced graphene oxide (PtNP-rGO) composites and their application as a novel architecture in electrochemical detection of rutin. PtNPs anchored over rGO are synthesized through a facile one-pot synthesis method, where the reduction of GO and in situ generation of PtNPs occurred concurrently. The characterization results of transmission electron microscopy (TEM) demonstrate that PtNPs with small particle sizes are dispersed on the rGO matrix. Electrochemical measurements reveal that a PtNP-rGO modified glass carbon electrode (GCE) directly catalyzes rutin oxidation and displays an enhanced current response compared with a bare GCE. Under the optimal experimental conditions, the peak current was linear with rutin concentration in the range of 5 × 10-8 to 1 × 10-5 M with the detection limit of 1 × 10-8 M (S/N = 3) by differential pulse voltammetry. The proposed method was successfully applied to determine rutin in tablet samples with satisfactory results. This journal is

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two-dimensional (2D) materials usually have a layer-dependent work function, which require fast and accurate detection for the evaluation of their device performance. A detection technique with high throughput and high spatial resolution has not yet been explored. Using a scanning electron microscope, we have developed and implemented a quantitative analytical technique which allows effective extraction of the work function of graphene. This technique uses the secondary electron contrast and has nanometre-resolved layer information. The measurement of few-layer graphene flakes shows the variation of work function between graphene layers with a precision of less than 10 meV. It is expected that this technique will prove extremely useful for researchers in a broad range of fields due to its revolutionary throughput and accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fast detection and removal of organic dyes from contaminated water has become an urgent environmental issue due to their high toxicity, chemical stability, and low biodegradability. In this paper, we have developed graphene oxide decorated Fe3O4@SiO2 (Fe3O4@SiO2-GO) as a novel adsorbent aiming at the rapid adsorption and trace analysis of organic dyes followed by surface enhanced Raman scattering (SERS). The structure and morphology of the nanocomposites were characterized by transmission electron microscopy (TEM), Fourier infrared spectrometry (FT-IR), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). The obtained nanocomposites were used to adsorb methylene blue (MB) in aqueous solution based on π-π stacking interaction and electrostatic attraction between MB and GO, and the adsorption behaviors of MB were investigated. Moreover, the obtained nanocomposites with adsorbed dyes were separated from the solution and loaded with silver nanoparticles for SERS detection. These nanocomposites showed superior SERS sensitivity and the lowest detectable concentration was 1.0 × 10-7 M.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel electrochemical sensor for highly sensitive and selective detection of dopamine (DA) was developed based on a graphene quantum dots (GQDs) and Nafion composite modified glassy carbon electrode (GCE). GQDs were synthesized by a hydrothermal approach for cutting graphene sheets into GQDs and characterized by TEM, UV-vis, photoluminescence, and FT-IR spectra. The GQDs had carboxyl groups with a negative charge, which not only provided good stability, but also enabled interaction with amine functional groups in DA through electrostatic interaction to enhance the specificity of DA. The interaction and electron communication between GQDs and DA can be further strengthened via π-π stacking force. Nafion was used as an anchoring agent to increase the robustness of GQDs on the electrode surface and sensor stability and reproducibility. The GQDs-Nafion composite exhibits a good linear range of 5 nM to 100 μM and a limit of detection as low as 0.45 nM in the detection of DA. The proposed electrochemical sensor also displays good selectivity and high stability and could be used for the determination of DA in real samples with satisfactory results. The present study provides a powerful avenue for the design of an ultrasensitive detection method for clinical application.