60 resultados para Rotating bending

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of yarn hairiness on energy consumption when rotating a ring-spun yarn package is investigated theoretically and experimentally. A theoretical model is developed to calculate the energy required to rotate hair fibers, based on hair length and number as well as package speed and size. A single spindle test rig is used to verify the theoretical prediction. The experimental results confirm the theoretical prediction that the package power increases with increased yarn hairiness level and spindle speed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rig was constructed to carry out compression of an aluminum cylinder with a monotonically rotating platen. The tests carried out showed that the compression load decreased and the side wall bulge severity reduced when the die was rotated. Not all the work supplied by the rotating dies was transferred to the work-piece; circumferential slippage was frequently observed at the die/material interface. This slippage was quantified by comparing measurements made during interrupted testing with the angular velocity of the die. A compound velocity field based on an exponential cusp description of the barreling was employed in an upper bound analysis. An approximate analytical solution was obtained for the degree of barreling and the compression pressure. The model is able to reproduce the decrease in barreling and compression loads with increasing die rotation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To quantify the frictional behaviour in sheet forming operations, several laboratory experiments which simulate the real forming conditions are performed. The Bending Under Tension Test is one such experiment which is often used to represent the frictional flow of sheet material around a die or a punch radius. Different mathematical representations are used to determine the coefficient of friction in the Bending Under Tension Test. In general the change in the strip thickness in passing over the die radius is neglected and the radius of curvature to thickness ratio is assumed to be constant in these equations. However, the effect of roller radius, sheet thickness and the surface pressure are also omitted in some of these equations. This work quantitatively determined the effect of roller radius and the tooling pressure on the coefficient of friction. The Bending Under Tension Test was performed using rollers with different radii and also lubricants with different properties. The tool radii were found to have a direct influence in the contact pressure. The effect of roller radius on friction was considerable and it was observed that there is a clear relationship between the contact pressure and the coefficient of friction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The shear strain of the interlayer in the elastic regime for a Steel-Polymer-Steel (SPS) laminate material has been studied during bending to a constant curvature. An analytical model is developed and the influence of process parameters are analyzed. The tension in the cover sheets is also determined and, finally, a moment diagram is calculated. The results show that the moment in the SPS laminate is nonuniform along the bent strip even though the curvature is constant because of the tension and compression forces introduced in the cover sheets by the shear reaction force of the interlayer material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compression tests carried out on aluminium specimens showed that when the die was rotated the compression load dropped. A slab method is employed to examine this process. The load reduction is explained by the deviation of friction vector due to the relative circumferential movement between the die and the material. This mechanism is incorporated into a theoretical model and an expression is derived for compression pressure. Analytical solutions established compare favourably with experimental results. It is also shown that there is a limitation to the load reduction: the compressive load can never be lower than 70 percent of the yield limit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate finite element crash simulations of side impact depend upon a thorough understanding of dynamic tube bending. There is a need to understand the dynamic bending mode of square sections (equivalent of automotive structural parts) to obtain a greater confidence in CAE. This work varied strain rate and material definitions, such as Cowper-Symonds vs Zerilli-Armstrong, as well as initial velocity and yield strength. The results show that most of the plastic work is done between strains rates of 30 ¿ 300/s and strains up to 0.3. Peak strain rates were marginally above 1000/s with maximum strain greater than 1. When the strain rate definition and material model were modified, it was shown that a higher yield stress produced a higher reaction force. These results would suggest that the strain rate sensitivity needs to be carefully identified for accurate crash simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A torsional upset forging process is analysed on the basis of plasticity theory for powder metal forging. Torsional upset forging is a process to be performed by rotating a lower die with a punch travelling along the longitudinal direction of a work-piece. In this study, an upper bound analysis considering bulging effect, finite element method simulation (DEFORM3D), and experimental research have been performed for the process. A simple kinematically admissible velocity field for a three dimensional deformation is presented for the torsional upset forging of a cylindrical billet. Distributions of stress, strain, and forging load in the process have been obtained, and compared with those in conventional upset forging. In the process, an increase in a friction factor and rotation speed results in a decrease in magnitude of upset force, dead metal zone, and non-homogeneous deformation. This process can reduce forming load, which leads to improvement of die life, and also reduce bulging effect. In addition, the initial sintered-structure and density distribution is improved by the process and surface defect due to high deformation is decreased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using Titanium (Ti) foam as an implant material is a new approach for biomedical applications and it is important to understand the mechanical behaviors of this new foam material. In the present study, the bending of the Ti foam has been simulated and compared against recently published data [1]. FE Analysis has been performed by Abaqus software. Stiffness and Yield strength of foams between 50% (cortical bone) to 80% (cancellous bone) porosity range were considered. This study showed that crushable foam material model in Abaqus, which has developed primarily for Aluminum (Al) foam alloys, is also valid for Ti Foam before any crack or damage occurs in the sample.