36 resultados para Protéine kinase C

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the effect of exercise on protein kinase C (PKC) activity and localization in human skeletal muscle, eight healthy men performed cycle  ergometer exercise for 40 min at 76±1% the peak pulmonary O2 uptake (VO2peak), with muscle samples obtained at rest and after 5 and 40 min of exercise. PKC expression, phosphorylation and activities were examined by immunoblotting and in vitro kinase assays of fractionated and whole tissue preparations. In response to exercise, total PKC activity was slightly higher at 40 min in an enriched membrane fraction, and using a pSer-PKC-substrate motif antibody it was revealed that exercise increased the serine phosphorylation of a ∼50 kDa protein. There were no changes in conventional PKC (cPKC) or PKCθ activities; however, atypical PKC (aPKC) activity was ∼70% higher at 5 and 40 min, and aPKC expression and Thr410/403 phosphorylation were unaltered by exercise. There were no effects of exercise on the abundance of PKCα, PKCδ, PKCθ and aPKC within cytosolic or enriched membrane fractions of skeletal muscle. These data indicate that aPKC, but not cPKC or PKCθ, are activated by exercise in contracting muscle suggesting a potential role for aPKC in the regulation of skeletal muscle function and metabolism during exercise in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The segment C-terminal to the hydrophobic motif at the V5 domain of protein kinase C (PKC) is the least conserved both in length and in amino acid identity among all PKC isozymes. By generating serial truncation mutants followed by biochemical and functional analyses, we show here that the very C terminus of PKCα is critical in conferring the full catalytic competence to the kinase and for transducing signals in cells. Deletion of one C-terminal amino acid residue caused the loss of ~60% of the catalytic activity of the mutant PKCα, whereas deletion of 10 C-terminal amino acid residues abrogated the catalytic activity of PKCα in immune complex kinase assays. The PKCα C-terminal truncation mutants were found to lose their ability to activate mitogen-activated protein kinase, to rescue apoptosis induced by the inhibition of endogenous PKC in COS cells, and to augment melatonin-stimulated neurite outgrowth. Furthermore, molecular dynamics simulations revealed that the deletion of 1 or 10 C-terminal residues results in the deformation of the V5 domain and the ATP-binding pocket, respectively. Finally, PKCα immunoprecipitated using an antibody against its C terminus had only marginal catalytic activity compared with that of the PKCα immunoprecipitated by an antibody against its N terminus. Therefore, the very C-terminal tail of PKCα is a novel determinant of the catalytic activity of PKC and a promising target for selective modulation of PKCα function. Molecules that bind preferentially to the very C terminus of distinct PKC isozymes and suppress their catalytic activity may constitute a new class of selective inhibitors of PKC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein kinase C (PKC) is a family of serine/threonine protein kinases that are pivotal in cellular regulation. Since its discovery in 1977, PKCs have been known as cytosolic and peripheral membrane proteins. However, there are reports that PKC can insert into phospholipids vesicles in vitro. Given the intimate relationship between the plasma membrane and the activation of PKC, it is important to determine whether such “membrane-inserted” form of PKC exists in mammalian cells or tissues. Here, we report the identification of an integral plasma membrane pool for all the 10 PKC isozymes in vivo by their ability to partition into the detergent-rich phase in Triton X-114 phase partitioning, and by their resistance to extractions with 0.2 M sodium carbonate (pH 11.5), 2 M urea and 2 M sodium chloride. The endogenous integral membrane pool of PKC in mouse fibroblasts is found to be acutely regulated by phorbol ester or diacylglycerol, suggesting that this pool of PKC may participate in cellular processes known to be regulated by PKC. At least for PKCα, the C2–V3 region at the regulatory domain of the kinase is responsible for membrane integration. Further exploration of the function of this novel integral plasma membrane pool of PKC will not only shed new light on molecular mechanisms underlying its cellular functions but also provide new strategies for pharmaceutical modulation of this important group of kinases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we explore the role of the C-terminus (V5 domain) of PKCvar epsilon plays in the catalytic competence of the kinase using serial truncations followed by immune-complex kinase assays. Surprisingly, removal of the last seven amino acid residues at the C-terminus of PKCvar epsilon resulted in a PKCvar epsilon-Δ731 mutant with greatly reduced intrinsic catalytic activity while truncation of eight amino acid residues at the C-terminus resulted in a catalytically inactive PKCvar epsilon mutant. Computer modeling and molecular dynamics simulations showed that the last seven and/or eight amino acid residues of PKCvar epsilon were involved in interactions with residues in the catalytic core. Further truncation analyses revealed that the hydrophobic phosphorylation motif was dispensable for the physical interaction between PKCvar epsilon and 3-phosphoinositide-dependent kinase-1 (PDK-1) as the PKCvar epsilon mutant lacking both the turn and the hydrophobic motifs could still be co-immunoprecipitated with PDK-1. These results provide fresh insights into the biochemical and structural basis underlying the isozyme-specific regulation of PKC and suggest that the very C-termini of PKCs constitute a promising new target for the development of novel isozyme-specific inhibitors of PKC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Members of the protein kinase C (PKC) family are key signalling mediators in immune responses, and pharmacological inhibition of PKCs may be useful for treating immune-mediated diseases. Objective: To review and discuss the insights gained so far into various PKC isozymes and the therapeutic potential and challenges of developing PKC inhibitors for immune disorder therapy. Methods: A literature review of the role of PKCs in immune cell signalling and recent studies describing immune functions associated with PKC isozyme deficiency in relevant mouse disease models, followed by specific case studies of current and potential therapeutic strategies targeting PKCs. Results/conclusion: There is vast amount of data supporting PKC isozymes as attractive drug targets for certain immune disorders. Although the development of specific PKC isozyme inhibitors has been challenging, some progress has been made. It remains to be seen if broad-scale or isozyme-selective inhibition of PKC will have clinical efficacy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PRK1/PKN is a member of the protein kinase C (PKC) superfamily of serine/threonine protein kinases. Despite its important role as a RhoA effector, limited information is available regarding how this kinase is regulated. We show here that the last seven amino acid residues at the C-terminus is dispensable for the catalytic activity of PRK1 but is critical for the in vivo stability of this kinase. Surprisingly, the intact hydrophobic motif in PRK1 is dispensable for 3-phosphoinositide-dependent kinase-1 (PDK-1) binding and phosphorylation of the activation loop, as the PRK1-Δ940 mutant lacking the last two residues of the hydrophobic motif and the last 5 residues at the C-terminus interacts with PDK-1 in vivo and has a similar specific activity as the wild-type protein. We also found that the last four amino acid residues at the C-terminus of PRK1 is critical for the full lipid responsiveness as the PRK1-Δ942 deletion mutant is no longer activated by arachidonic acid. Our data suggest that the very C-terminus in PRK1 is critically involved in the control of the catalytic activity and activation by lipids. Since this very C-terminal segment is the least conserved among members of the PKC superfamily, it would be a promising target for isozyme-specific pharmaceutical interventions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PRK1 is a lipid- and Rho GTPase-activated serine/threonine protein kinase implicated in the regulation of receptor trafficking, cytoskeletal dynamics and tumorigenesis. Although Rho binding has been mapped to the HR1 region in the regulatory domain of PRK1, the mechanism involved in the control of PRK1 activation following Rho binding is poorly understood. We now provide the first evidence that the very C-terminus beyond the hydrophobic motif in PRK1 is essential for the activation of this kinase by RhoA. Deletion of the HR1 region did not completely abolish the binding of PRK1-ΔHR1 to GTPγS-RhoA nor the activation of this mutant by GTPγS-RhoA in vitro. In contrast, removing of the last six amino acid residues from the C-terminus of PRK1 or truncating of a single C-terminal residue from PRK1-ΔHR1 completely abrogated the activation of these mutants by RhoA both in vitro and in vivo. The critical dependence of the very C-terminus of PRK1 on the signaling downstream of RhoA was further demonstrated by the failure of the PRK1 mutant lacking its six C-terminal residues to augment lisophosphatidic acid-elicited neurite retraction in neuronal cells. Thus, we show that the HR1 region is necessary but not sufficient in eliciting a full activation of PRK1 upon binding of RhoA. Instead, such activation is controlled by the very C-terminus of PRK1. Our results also suggest that the very C-terminus of PRK1, which is the least conserved among members of the protein kinase C superfamily, is a potential drug target for pharmacological intervention of RhoA-mediated signaling pathways

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PRK2/PKNγ is a Rho effector and a member of the protein kinase C superfamily of serine/threonine kinases. Here, we explore the structure–function relationship between various motifs in the C-terminal half of PRK2 and its kinase activity and regulation. We report that two threonine residues at conserved phosphoacceptor position in the activation loop and the turn motif are essential for the catalytic activity of PRK2, but the phosphomimetic Asp-978 at hydrophobic motif is dispensable for kinase catalytic  competence. Moreover, the PRK2-Δ958 mutant with the turn motif truncated still interacts with 3-phosphoinositide-dependent kinase-1 (PDK-1). Thus, both the intact hydrophobic motif and the turn motif in PRK2 are dispensable for the binding of PDK-1. We also found that while the last seven amino acid residues at the C-terminus of PRK2 are not required for the activation of the kinase by RhoA in vitro, however, the extreme C-terminal segment is critical for the full activation of PRK2 by RhoA in cells in a GTP-dependent manner. Our data suggest that the extreme C-terminus of PRK2 may represent a potential drug target for effector-specific pharmacological intervention of Rho-medicated biological processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The potential lipotoxic effect of intramyocellular triglyceride (IMTG) accumulation has been suggested to be a major component in the development of insulin resistance. Increased levels of IMTGs correlate with insulin resistance in both obese and diabetic patients, but this relationship does not exist in endurance trained (ETr) subjects. This may be, in part, related to differences in the gene expression and activities of key enzymes involved in fatty acid transport and oxidation as well as in the perodixation status of the IMTGs in obese/diabetic patients as compared with ETr subjects. Disruptions in fat and lipid homeostasis in skeletal muscle have been shown to activate protein kinase C (PKC), which acts on several downstream signalling pathways, including the insulin and the IB kinase (IKK)/NFB signalling pathways. Additionally, an increased peroxidation of IMTGs may reduce insulin sensitivity by increasing TNF, which is known to increase the expression of suppressor of cytokine signalling proteins (SOCS). A common characteristic observed when activating both PKC and TNF/SOCS3 is the inhibition of tyrosine phosphorylation of IRS-1 and subsequently an inhibition of its activation of downstream signalling molecules. These may be important players in the development of insulin resistance and understanding their activation and expression in both obese and ETr humans should assist in understanding how and why IMTGs become lipotoxic.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Protein kinase C (PKC) is a key regulator of cell proliferation, differentiation, and apoptosis and is one of the drug targets of anticancer therapy. Recently, a single point mutation (D294G) in PKCα has been found in pituitary and thyroid tumors with more invasive phenotype. Although the PKCα-D294G mutant is implicated in the progression of endocrine tumors, no apparent biochemical/cell biological abnormalities underlying tumorigenesis with this mutant have been found. We report here that the PKCα-D294G mutant is unable to bind to cellular membranes tightly despite the fact that it translocates to the membrane as efficiently as the wild-type PKCα upon treatment of phorbol ester. The impaired membrane binding is associated with this mutant's inability to transduce several antitumorigenic signals as it fails to mediate phorbol ester–stimulated translocation of myristoylated alanine–rich protein kinase C substrate (MARCKS), to activate mitogen-activated protein kinase and to augment melatonin-stimulated neurite outgrowth. Thus, the PKCα-D294G is a loss-of-function mutation. We propose that the wild-type PKCα may play important antitumorigenic roles in the progression of endocrine tumors. Therefore, developing selective activators instead of inhibitors of PKCα might provide effective pharmacological interventions for the treatment of certain endocrine tumors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of exercise on novel signalling enzymes in skeletal muscle of humans was investigated. It was shown that exercise increased the activity of a calcium and calmodulin activated kinase. High-intensity, but submaximal, exercise increased the activity of some but not all isoforms of protein kinase C, a lipid-activated kinase family. These findings suggest that these enzymes may be part of the signalling process leading to beneficial adaptation to repeated exercise as well as the control of function within skeletal muscle during exercise.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Screening of a genomic library of the thermophile Thermus thermophilus revealed a novel thermophilic hint gene, homologues of which are highly conserved in genera from archaea to mammals. Hint belongs to the HIT protein super-family, which contains two broad groups, Fhit, associated with tumour suppression in eukaryotes and Hint with putatitive protein kinase C inhibitory activity. In T. thermophilus the 321bp gene has a GC content of 67% overall and 94.4% in the third nucleotide position, with unusually no thymine as a wobble base. The gene product, a small highly conserved 11996Da predicted soluble cytoplasmic protein, offers an ideal opportunity to investigate thermostabilising amino acid substitutions. Here we report on the characterisation of the novel hint sequence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years metabotropic glutamate receptors have emerged as key targets for the design of new antipsychotic medications for schizophrenia, in particular mGluR5 and mGluR2/3. These receptors exhibit diverse interactions with other neurotransmitter receptors and critical elements of intracellular signalling cascades known to be important to the pharmacotherapy of schizophrenia. In addition, mGluR5 and mGluR2/3 are intimately involved in behavioural domains related to the symptoms of this disorder. Both animal and clinical studies using novel drugs targeting these receptors have provided encouraging results. The number of patents registered for drugs targeting metabotropic glutamate receptors has grown dramatically, and positive allosteric modulators for both receptors show particular promise.