14 resultados para Polycrystalline semiconductors.

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method is proposed to quantify progress of dynamic recrystallization in polycrystalline metals during deformation. This approach utilises the stress–strain curve of the material to quantify the progress of dynamic softening. The outcome of this method showed a good agreement with experimental results for alloys of this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work combines electron backscattering diffraction and Schmid analysis to investigate secondary twinning in the magnesium alloy Mg–3Al–1Zn. Inspection of the misorientations between the parent and {1011} - {1012} doubly twinned volumes reveals that there are four possible variants. One of these variants (the one that forms a misorientation with the matrix characterized by 38°⟨1210⟩ ) is favoured much more than the others. This variant involves the activation of secondary twinning systems quite inconsistent with Schmid-type behaviour. For the secondary twin to grow significantly it must take on a shape enforced by the primary twin. This is non-optimal for strain compatibility. It is argued that the 38°⟨1210⟩ variant occurs most because it provides the closest match between the primary and secondary twinning planes, thus minimizing the compatibility strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The data covers the following:
X-ray photoelectron spectroscopy (XPS) - to collect surface chemical structure changes (using RMIT instrument);
Scanning electron microscopy (SEM) - to collect surface physical structure changes;
Atomic force microscopy (AFM) - to collect surface morphology changes;
Internal/External quantum efficiency (IQE/EQE) – to collect DSSC (Dye Sensitised Solar Cells) efficiency data;
Discharge/Charge capacity - to collect battery efficiency data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plausibility of the entropic repulsion of electrical double layers acting to stabilize an equilibrium thickness of intergranular glass films in polycrystalline ceramics is explored. Estimates of the screening length, surface potential, and surface charge required to provide a repulsive force sufficiently large to balance the attractive van der Waals and capillary forces for observable thicknesses of intergranular film are calculated and do not appear to be beyond possibility. However, it has yet to be established whether crystalline particles in a liquid-phase sintering medium possess an electrical double layer at high temperatures. If they do, such a surface charge layer may well have important consequences not only for liquid-phase sintering but also for high-frequency electrical properties and microwave sintering of ceramics containing a liquid phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alloy Ni-Mn-Ga aroused great interest for application as a magnetic shape memory (MSM) material. This effect is caused by reorientation of twin variants by an external magnetic field. So far, most of the experiments were concentrated on single crystals. But, the MSM effect can also be realised in polycrystals which can be prepared much more efficiently. Here, polycrystalline samples were prepared by directional solidification with a <100> fibre texture of the high temperature cubic austenitic phase parallel to the heat flow. Afterwards, a heat treatment was applied for chemical homogenisation and stress relaxation in the austenitic state. Then the samples were heated up to the austenitic state and cooled down under load. The microstructure was analysed by Electron Back Scatter Diffraction (EBSD) before and after that treatment. Mechanical training at room temperature and 40°C was tracked by recording stress-strain curves. By increasing the number of training cycles the strain also increases. The influence of different training temperatures was investigated on samples with different grain sizes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scanning white beam X-ray microdiffraction has been used to study the heterogeneous grain deformation in a polycrystalline Mg alloy (MgAZ31). The high spatial resolution achieved on beamline 7.3.3 at the Advanced Light Source provides a unique method to measure the elastic strain and orientation of single grains as a function of applied load. To carry out in-situ measurements a light weight (~0.5kg) tensile stage, capable of providing uniaxial loads of up to 600kg, was designed to collect diffraction data on the loading and unloading cycle. In-situ observation of the deformation process provides insight about the crystallographic deformation mode via twinning and dislocation slip.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic ionic plastic crystals (OIPCs) show strong potential as solid-state electrolytes for lithium battery applications, demonstrating promising electrochemical performance and eliminating the need for a volatile and flammable liquid electrolyte. The ionic conductivity (σ) in these systems has recently been shown to depend strongly on polycrystalline morphology, which is largely determined by the sample's thermal history. [K. Romanenko et al., J. Am. Chem. Soc., 2014, 136, 15638]. Tailoring this morphology could lead to conductivities sufficiently high for battery applications, so a more complete understanding of how phenomena such as solid-solid phase transitions can affect the sample morphology is of significant interest. Anisotropic relaxation of nuclear spin magnetisation provides a new MRI based approach for studies of polycrystalline materials at both a macroscopic and molecular level. In this contribution, morphology alterations induced by solid-solid phase transitions in triisobutyl(methyl)phosphonium bis(fluorosulfonyl)imide (P1444FSI) and diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate (P1224PF6) are examined using magnetic resonance imaging (MRI), alongside nuclear magnetic resonance (NMR) spectroscopy, diffusion measurements and conductivity data. These observations are linked to molecular dynamics and structural behaviour crucial for the conductive properties of OIPCs. A distinct correlation is established between the conductivity at a given temperature, σ(T), and the intensity of the narrow NMR signal that is attributed to a mobile fraction, fm(T), of ions in the OIPC. To explain these findings we propose an analogy with the well-studied relationship between permeability (k) and void fraction (θ) in porous media, with k(θ) commonly quantified by a power-law dependence that can also be employed to describe σ(fm).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential of combining cold plasma and thermal treatment for the nanofabrication of advances semiconductors was investigated.