75 resultados para ISOTHERMAL SURFACES

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel polyvinylalcohol/silica (PVA/SiO2) nano-composite is prepared with the self-assembly monolayer (SAM) technique. The SiO2 nano-particles are homogenously distributed throughout the PVA matrixes as nano-clusters with an average diameter ranged from 15 to 240 nm depending on the SiO2 contents. Using differential scanning calorimetry (DSC), the non-isothermal crystallisation behaviour and kinetics of the PVA/SiO2 nano-composites are investigated and compared to those of the pure PVA. There are strong dependences of the degree of crystallinity (Xc), peak crystallisation temperature (Tp), half time of crystallisation (t1/2), and Ozawa exponent (m) on the SiO2 content and cooling rate. The crystallisation activation energy (E) calculated with the Kissinger model is markedly lower when a small amount of SiO2 is added, then gradually increases and finally becomes higher than that of the pure PVA when there is more than 10% SiO2 in the composite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of tris(2,2'-bipyridyl) ruthenium (III) as a chemiluminescent spray reagent spot-test for heroin is discussed. Two forms of the reagent are investigated an aqueous and an anhydrous where both were found to give vastly different results. The aqueous reagent giving slow, low intensity chemiluminescence whilst the anhydrous reagent gave a fast, bright response in the presence of 3,6-diacetylmorphine. The anhydrous reagent is less sensitive the slow, intensity response is characteristic of only two opiates tested 3,6-diacetylmorphine and 3-monoacetylmorphine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An accurate kinetics model is essential for understanding the curing mechanism and predicting the end properties of polymer materials. Graphite/epoxy AS4/ 8552 prepreg is a recent high-performance thermosetting composite modified with thermoplastic, which is being used in the manufacture of aircraft and military structures. The isothermal cures of this system along with another thermoplastic toughened high-performance prepreg, the T800H/3900-2 system, were investigated by real-time Fourier transform infrared (FTIR) spectroscopy. The cure rate was quantitatively analyzed based on the concentration profiles of both the epoxy and primary amine groups. Three autocatalytic models were used to determine kinetics parameters for both composite systems. The model which utilizes an empirical term, the final relative conversion (at different isothermal curing temperatures), describes the experimental data of both systems more satisfactorily than the model which applies a diffusion factor. The modeling results suggest that the curing of epoxy within both prepregs can be assumed to be a second order process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lawsone (2-hydroxy-1,4-naphthoquinone) reacts with latent fingermark deposits on paper surfaces to yield purple-brown impressions of ridge details which are also photoluminescent; this compound represents the first in a completely new class of fingermark detection reagents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parametric modelling is gaining in popularity as both a fabrication and design tool, but its application in the architectural design industry has not been widely explored. This form of modelling has the ability to generate complex forms with intuitively reactive components, allowing designers to express and
fabricate structures previously too laborious and geometrically complex to realise. The key aim of the paper is to address the increasing need for seamless and bi-directional connectivity between the design, modelling and
fabrication ambit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of high reflectance surfaces reduces the amount of solar radiation absorbed through building envelopes and urban structures and thus keeping their surfaces cooler. The cooling energy savings by using high reflectance surfaces have been well documented. Higher surface temperatures add to increasing the ambient temperature as convection intensity is higher. Such temperature increase has significant impacts on the air conditioning energy utilization in hot climates. This study makes use of numerical simulations to analyze the effect of commonly used building materials on the air temperature. A part of the existing CBD (Central Business District) area of Singapore was selected for the study. A series of Computational Fluid Dynamics (CFD) simulations have been carried out using the software CFX-5.6. It was found that at low wind speeds, the effect of materials on the air temperature was significant and the temperature at the middle of a narrow canyon increased up to 2.5[degrees]C with the facade material having lower reflectance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mass (e.g. carbon) transfer coefficient at a workpiece surface is an important kinetic factor to control the heat treatment process of the workpiece and to evaluate heat treatment equipment. The coefficient can be calculated from the carbon concentration at the surface of a sample carburized in a carburizing furnace for a given time. Two common measurement methods which use a thin plate and employ a component as samples respectively are evaluated and compared for sensitivity and uncertainty. The comparison shows that the use of a component produces higher measurement precision and also has the advantage in measuring the carbon transfer coefficients at different treated positions. This method is then extended and discussed methodologically. Also two equations are proposed to calculate the carbon transfer coefficient and its uncertainty, respectively. This method is also applied to measure the carbon transfer coefficient in a fluidized bed heat treatment furnace.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the current work, two different coatings, nitrocarburised (CN) and titanium carbonitride (TiCN) on M2 grade high speed tool steel, were prepared by commercial diffusion and physical vapour deposition (PVD) techniques, respectively. Properties of the coating were characterised using a variety of techniques such as Glow-Discharge Optical Emission Spectrometry (GD-OES) and Scanning Electron Microscopy (SEM). Three non-commercial, oil-based lubricants with simplified formulations were used for this study. A tribological test was developed in which two nominally geometrically-identical crossed cylinders slide over each other under selected test conditions. This test was used to evaluate the effectiveness of a pre-applied lubricant film and a surface coating for various conditions of sliding wear. Engineered surface coatings can significantly improve wear resistance of the tool surface but their sliding wear performances strongly depend on the type of coating and lubricant combination used. These coating-lubricant interactions can also have a very strong effect on the useful life of the lubricant in a tribological system. Better performance of lubricants during the sliding wear testing was achieved hen used with the nitrocarburised (CN) coating. To understand the nature of the interactions and their possible effects on the coating-lubricant system, several surface analysis techniques were used. The molecular level investigation of Fourier Transform Infrared Spectroscopy (FTIR) revealed that oxidative degradation occurred in all used oil-based lubricants during the sliding wear test but the degradation behaviour of oil-based lubricants varied with the coating-lubricant system and the wear conditions. The main differences in the carbonyl oxidation region of the FTIR spectra (1900-1600 cm-1) between different coating-lubricant systems may relate to the effective lifetime of the lubricant during the sliding wear test. Secondary Ion Mass Spectrometry (SIMS) depth profiling shows that the CN coating has the highest lubricant absorbability among the tested tool surfaces. Diffusion of chlorine (C1), hydrogen (H) and oxygen (O) into the surface of subsurface of the tool suggested that strong interactions occurred between lubricant and tool surface during the sliding wear test. The possible effects of the interactions on the performance of whole tribological system are also discussed. The study of Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) indicated that the envelope of hydrocarbons (CmHn) of oil lubricant in the positive TOF-SIMS spectra shifted to lower mass fragment after the sliding wear testing due to the breakage of long-chain hydrocarbons to short-chain ones during the degradation of lubricant. The shift of the mass fragment range of the hydrocarbon (CmHn) envelope caries with the type of both tool surface and lubricant, again confirming that variation in the performance of the tool-lubricant system relates to the changes in surface chemistry due to tribochemical interactions at the tool-lubricant interface under sliding wear conditions. The sliding wear conditions resulted in changes not only in topography of the tool surface due to mechanical interactions, as outlined in Chapter 5, but also in surface chemistry due to tribochemical interactions, as discussed in Chapters 6 and 7.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, titanium (Ti) samples were surface-modified by titania (TiO2), silica (SiO2) and hydroxyapatite (HA) coatings using a sol-gel process. The bioactivity of the film-coated Ti samples was investigated by cell attachment and morphology study using human osteoblast-like SaOS-2 cells. Results of the cell attachment indicated that the densities of cell attachment on the surfaces of Ti samples were significantly increased by film coatings; the density of cell attachment on HA film-coated surface was higher than those on TiO2 and SiO2 film-coated surfaces. Cell morphology study showed that the cells attached, spread and grew well on the three kinds of film-coated surfaces. It can be concluded that the three kinds of film coatings can bioactivate the surfaces of Ti samples effectively. Overall, Ti sample with HA film-coated surface exhibited the best bioactivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The introduction of ninhydrin treatment as a chemical technique for the visualisation of latent fingermarks on porous surfaces revolutionised approaches to forensic fingermark examination. Since then, a range of amino acid sensitive reagents has been developed and such compounds are in widespread use by law enforcement agencies worldwide. This paper reviews the development and use of these reagents for the detection of latent fingermarks on porous surfaces. A brief overview is provided, including an historical background, forensic significance, and a general approach to the development of latent fingermarks on porous surfaces. This is followed by a discussion of specific amino acid sensitive treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel approach to producing improved bio-interfaces by combining continuous wave (CW) and pulsed plasma polymerization (PP) modes is reported. This approach has enabled the generation of stable interfaces with a higher density of primary amine functionality on metal, ceramic and semiconductor surfaces. Heptylamine (HA) was used as the amine-precursor. In this new design, a thin CW PPHA layer is introduced to provide strong cross-linking and attachment to the metal or semiconductor surfaces and to provide a good foundation for better bonding a pulsed PPHA layer with high retention of functional groups. The combined mode provides the pulsed mode advantage of a 3-fold higher density of primary amines, while retaining much of the markedly higher stability in aqueous solutions of the continuous mode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parametric modelling is gaining in popularity as both a fabrication and design tool, but its application in the architectural design industry has not been widely explored. Parametric modelling has the ability to generate complex forms with intuitively reactive components, allowing designers to express and fabricate structures previously too laborious and geometrically complex to realise. This alIows designers to address a project at both the macro and micro levels of resolution in the governing control surface and the individual repetitive component. This two level modelling control, of component and overall surface, can allow designers to explore new types of form generation subject to parametric constraints. Shading screens have been selected as the focus for this paper and are used as a medium to explore form generation within a given set of functional parameters. Screens can have many applications in a building but for the purpose of the following case studies, lighting quality and passive sun control are the main functional requirement. A set of screen components have been designed within certain shading parameters to create a generic component that can automatically adapt to any given climatic conditions. These will then be applied to surfaces of varying degrees of geometric complexity to be analysed in their ability to correctly tessellate and create a unified screening array true to the lighting requirements placed on the generic component.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The syntheses and structures of the novel Ce–Fe bimetallic complexes [{Fe(sal)2(bpy)}2Ce(NO3)(H2O)3]·EtOH and [{Fe(sal)2(bpy)}4Ce2(H2O)11][salH]2·EtOH·3H2O (salH2 = salicylic acid) suggest Fe3+–sal2− units and Ce–OC(R)O–Fe bridging contribute to the formation of corrosion inhibitive layers on steel surfaces exposed to [Ce(salH)3(H2O)].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nature of deposits on mild steel surfaces formed by exposure to corrosive and inhibiting solutions has been examined by attenuated total reflectance spectroscopy. For cerium-based inhibitors, e.g. CeCl3 the formation of cerium-containing coatings was detected whilst the cerium carboxylate Ce(sal)3 (sal=salicylate), which combines the Ce3+ with the known organic inhibitor sal, was shown to involve substantial deposition of both cerium and a salicylate species. These results, combined with corrosion inhibition data for the respective inhibitor compounds clearly indicate a synergistic corrosion mechanism for Ce(sal)3 which underpins the improved performance of this corrosion inhibitor in comparison to the individual components (i.e. Na(sal) or CeCl3).