40 resultados para DNA Polymerase II

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

 RNA polymerase II (RNAP II) transcription and pre-mRNA 3' end formation are linked through physical and functional interactions. We describe here a highly efficient yeast in vitro system that reproduces both transcription and 3' end formation in a single reaction. The system is based on simple whole-cell extracts that were supplemented with a hybrid Gal4-VP16 transcriptional activator and supercoiled plasmid DNA templates encoding G-less cassette reporters. We found that the coupling of transcription and processing in vitro enhanced pre-mRNA 3' end formation and reproduced requirements for poly(A) signals and polyadenylation factors. Unexpectedly, however, we show that in vitro transcripts lacked m⁷G-caps. Reconstitution experiments with CF IA factor assembled entirely from heterologous components suggested that the CTD interaction domain of the Pcf11 subunit was required for proper RNAP II termination but not 3' end formation. Moreover, we observed reduced termination activity associated with extracts prepared from cells carrying a mutation in the 5'-3' exonuclease Rat1 or following chemical inhibition of exonuclease activity. Thus, in vitro transcription coupled to pre-mRNA processing recapitulates hallmarks of poly(A)-dependent RNAP II termination. The in vitro transcription/processing system presented here should provide a useful tool to further define the role of factors involved in coupling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RNA polymerase II (pol II) transcription termination requires co-transcriptional recognition of a functional polyadenylation signal, but the molecular mechanisms that transduce this signal to pol II remain unclear. We show that Yhh1p/Cft1p, the yeast homologue of the mammalian AAUAAA interacting protein CPSF 160, is an RNA-binding protein and provide evidence that it participates in poly(A) site recognition. Interestingly, RNA binding is mediated by a central domain composed of predicted -propeller-forming repeats, which occurs in proteins of diverse cellular functions. We also found that Yhh1p/Cft1p bound specifically to the phosphorylated C-terminal domain (CTD) of pol II in vitro and in a two-hybrid test in vivo. Furthermore, transcriptional run-on analysis demonstrated that yhh1 mutants were defective in transcription termination, suggesting that Yhh1p/Cft1p functions in the coupling of transcription and 3'-end formation. We propose that direct interactions of Yhh1p/Cft1p with both the RNA transcript and the CTD are required to communicate poly(A) site recognition to elongating pol II to initiate transcription termination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interactions of pre-mRNA 3′end factors and the CTD of RNA polymerase II (RNAP II) are required for transcription termination and 3′end processing. Here, we demonstrate that Ssu72p is stably associated with yeast cleavage and polyadenylation factor CPF and provide evidence that it bridges the CPF subunits Pta1p and Ydh1p/Cft2p, the general transcription factor TFIIB, and RNAP II via Rpb2p. Analyses of ssu72-2 mutant cells in the absence and presence of the nuclear exosome component Rrp6p revealed defects in RNAP II transcription elongation and termination. 6-azauracil, that reduces transcription elongation rates, suppressed the ssu72-2 growth defect at 33°C. The sum of our analyses suggests a negative influence of Ssu72p on RNAP II during transcription that affects the commitment to either elongation or termination.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Reverse transcription of the HIV RNA genome is thought to occur in the host cell cytoplasm after viral adsorption. However, viral DNA has been isolated in cell-free virus particles. We have quantitated by polymerase chain reaction (PCR) amplification the amount of viral DNA in virions as compared to RNA. Virus produced by proviral DNA transfections of cos-7 cells or by chronically-infected H9 cells; neither of which express the cell surface CD4 receptor, contained at least 1000 times more viral RNA than DNA. In contrast, only 60 times more RNA than DNA was present in virus particles produced by transfection of Jurkat cells, which were CD4-positive and thus potentially susceptible to superinfection. Protease-defective virus, carrying only the precursor of reverse transcriptase (RT) p160gag-pol, contained virtually no detectable DNA. These results indicate that only mature RT (p66/p51) and not its precursor (p160gag-pol) is responsible for the presence of viral DNA in HIV.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The PHYTOCHROME AND FLOWERING TIME1 gene encoding the MEDIATOR25 (MED25) subunit of the eukaryotic Mediator complex is a positive regulator of jasmonate (JA)-responsive gene expression in Arabidopsis (Arabidopsis thaliana). Based on the function of the Mediator complex as a bridge between DNA-bound transcriptional activators and the RNA polymerase II complex, MED25 has been hypothesized to function in association with transcriptional regulators of the JA pathway. However, it is currently not known mechanistically how MED25 functions to regulate JA-responsive gene expression. In this study, we show that MED25 physically interacts with several key transcriptional regulators of the JA signaling pathway, including the APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) transcription factors OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF59 and ERF1 as well as the master regulator MYC2. Physical interaction detected between MED25 and four group IX AP2/ERF transcription factors was shown to require the activator interaction domain of MED25 as well as the recently discovered Conserved Motif IX-1/EDLL transcription activation motif of MED25-interacting AP2/ERFs. Using transcriptional activation experiments, we also show that OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF59- and ERF1-dependent activation of PLANT DEFENSIN1.2 as well as MYC2-dependent activation of VEGETATIVE STORAGE PROTEIN1 requires a functional MED25. In addition, MED25 is required for MYC2-dependent repression of pathogen defense genes. These results suggest an important role for MED25 as an integrative hub within the Mediator complex during the regulation of JA-associated gene expression.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Increased oxidative damage to DNA is one of the pathways involved in Alzheimer's disease (AD). Insufficient base excision repair (BER) is in part responsible for increased oxidative DNA damage. The aim of the present study was to assess the effect of polymorphic variants of BER-involved genes and the peripheral markers of DNA damage and repair in patients with AD. MATERIAL AND METHODS: Comet assays and TaqMan probes were used to assess DNA damage, BER efxFB01;ciency and polymorphic variants of 12 BER genes in blood samples from 105 AD patients and 130 controls. The DNA repair efficacy (DRE) was calculated according to a specific equation. RESULTS: The levels of endogenous and oxidative DNA damages were higher in AD patients than controls. The polymorphic variants of XRCC1 c.580C>T XRCC1 c.1196A>G and OGG1 c.977C>G are associated with increased DNA damage in AD. CONCLUSION: Our results show that oxidative stress and disturbances in DRE are particularly responsible for the elevated DNA lesions in AD. The results suggest that oxidative stress and disruption in DNA repair may contribute to increased DNA damage in AD patients and risk of this disease. In addition, disturbances in DRE may be associated with polymorphisms of OGG1 and XRCC1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Arsenic is an established human carcinogen. However, there has been much controversy about the shape of the arsenic response curve, particularly at low doses. This controversy has been exacerbated by the fact that the  mechanism(s) of arsenic carcinogenesis are still unclear and because there are few satisfactory animal models for arsenic-induced carcinogenesis. Recent epidemiological studies have shown that the relative risk for cancer among populations exposed to ≤60 ppb As in their drinking water is often lower than the risk for the unexposed control population. We have found that treatment of human keratinocyte and fibroblast cells with 0.1 to 1 μM arsenite (AsIII) also produces a low dose protective effect against oxidative stress and DNA damage. This response includes increased transcription, protein levels and enzyme activity of several base excision repair genes, including DNA polymerase β and DNA ligase I. At higher concentrations (> 10 μM), As induces down-regulation of DNA repair, oxidative DNA damage and apoptosis. This low dose adaptive (protective) response by a toxic agent is known as hormesis and is characteristic of many agents that induce oxidative stress. A mechanistic model for arsenic carcinogenesis based on these data would predict that the low dose risk for carcinogenesis should be sub-linear. The threshold dose where toxicity outweighs protection is hard to predict based on in vitro dose response data, but might be estimated if one could determine the form (metabolite) and concentration of arsenic responsible for changes in gene regulation in the target tissues.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study investigated effects of prolonged submaximal exercise on Na+-K+-ATPase mRNA and protein expression, maximal activity, and content in human skeletal muscle. We also investigated the effects on mRNA expression of the transcription initiator gene, RNA polymerase II (RNAP II), and key genes involved in protein translation, eukaryotic initiation factor-4E (eIF-4E) and 4E-binding protein 1 (4E-BP1). Eleven subjects (6 men, 5 women) cycled at 75.5% (SD 4.8%) peak O2 uptake and continued until fatigue. A vastus lateralis muscle biopsy was taken at rest, fatigue, and 3 and 24 h postexercise. We analyzed muscle for Na+-K+-ATPase α1, α2, α3, β1, β2, and β3, as well for RNAP II, eIF-4E, and 4E-BP1 mRNA expression by real-time RT-PCR and Na+-K+-ATPase isoform protein abundance using immunoblotting. Muscle homogenate maximal Na+-K+-ATPase activity was determined by 3-O-methylfluorescein phosphatase activity and Na+-K+-ATPase content by [3H]ouabain binding. Cycling to fatigue [54.5 (SD 20.6) min] immediately increased {alpha}3 (P = 0.044) and {beta}2 mRNA (P = 0.042) by 2.2- and 1.9-fold, respectively, whereas {alpha}1 mRNA was elevated by 2.0-fold at 24 h postexercise (P = 0.036). A significant time main effect was found for α3 protein abundance (P = 0.046). Exercise transiently depressed maximal Na+-K+-ATPase activity (P = 0.004), but Na+-K+-ATPase content was unaltered throughout recovery. Exercise immediately increased RNAP II mRNA by 2.6-fold (P = 0.011) but had no effect on eIF-4E and 4E-BP1 mRNA. Thus a single bout of prolonged submaximal exercise induced isoform-specific Na+-K+-ATPase responses, increasing α1, α3, and β2 mRNA but only α3 protein expression. Exercise also increased mRNA expression of RNAP II, a gene initiating transcription, but not of eIF-4E and 4E-BP1, key genes initiating protein translation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To investigate protein import into the mitochondria of Dictyostelium discoideum, green fluorescent protein (GFP) was fused as a reporter protein either to variable lengths of the N-terminal region of chaperonin 60 (the first 23, 40, 80, 97, and 150 amino acids) or to the mitochondrial targeting sequence of DNA topoisomerase II. The fusion proteins were expressed in AX2 cells under the actin-15 promoter. Fluorescence images of GFP transformants confirmed that Dictyostelium chaperonin 60 is a mitochondrial protein. The level of the mitochondrially targeted GFP fusion proteins was unexpectedly much lower than the nontargeted (cytoplasmic) forms. The distinction between targeted and nontargeted protein activities was investigated at both the transcriptional and translational levels in vivo. We found that targeting GFP to the mitochondria results in reduced levels of the fusion protein even though transcription of the fusion gene and the stability of the protein are unaffected. [35S]methionine labeling and GFP immunoprecipitation confirmed that mitochondrially targeted GFP is translated at much slower rates than nontargeted GFP. The results indicate a novel phenomenon, import-associated translational inhibition, whereby protein import into the mitochondria limits the rate of translation. The simplest explanation for this is that import of the GFP fusion proteins occurs cotranslationally, i.e., protein synthesis and import into mitochondria are coupled events. Consistent with cotranslational import, Northern analysis showed that the GFP mRNA is associated with isolated mitochondria. This association occurred regardless of whether the GFP was fused to a mitochondrial leader peptide. However, the presence of an import-competent leader peptide stabilized the mRNA-mitochondria association, rendering it more resistant to extensive EDTA washing. In contrast with GFP, the mRNA of another test protein, aequorin, did not associate with the mitochondria, and its translation was unaffected by import of the encoded polypeptide into the mitochondria.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pcf11p, an essential subunit of the yeast cleavage factor IA, is required for pre-mRNA 3' end processing, binds to the C-terminal domain (CTD) of the largest subunit of RNA polymerase II (RNAP II) and is involved in transcription termination. We show that the conserved CTD interaction domain (CID) of Pcf11p is essential for cell viability. Interestingly, the CTD binding and 3' end processing activities of Pcf11p can be functionally uncoupled from each other and provided by distinct Pcf11p fragments in trans. Impaired CTD binding did not affect the 3' end processing activity of Pcf11p and a deficiency of Pcf11p in 3' end processing did not prevent CTD binding. Transcriptional run-on analysis with the CYC1 gene revealed that loss of cleavage activity did not correlate with a defect in transcription termination, whereas loss of CTD binding did. We conclude that Pcf11p is a bifunctional protein and that transcript cleavage is not an obligatory step prior to RNAP II termination.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many nuclear and nucleolar small RNAs are accumulated as nonpolyadenylated species and require 3′-end processing for maturation. Here, we show that several genes coding for box C/D and H/ACA snoRNAs and for the U5 and U2 snRNAs contain sequences in their 3′ portions which direct cleavage of primary transcripts without being polyadenylated. Genetic analysis of yeasts with mutations in different components of the pre-mRNA cleavage and polyadenylation machinery suggests that this mechanism of 3"-end formation requires cleavage factor IA (CF IA) but not cleavage and polyadenylation factor activity. However, in vitro results indicate that other factors participate in the reaction besides CF IA. Sequence analysis of snoRNA genes indicated that they contain conserved motifs in their 3" noncoding regions, and mutational studies demonstrated their essential role in 3"-end formation. We propose a model in which CF IA functions in cleavage and polyadenylation of pre-mRNAs and, in combination with a different set of factors, in 3"-end formation of nonpolyadenylated polymerase II transcripts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

RNA polymerase II transcribes genes encoding proteins and a large number of small stable RNAs. While pre-mRNA 3'-end formation requires a machinery ensuring tight coupling between cleavage and polyadenylation, small RNAs utilize polyadenylation-independent pathways. In yeast, specific factors required for snRNA and snoRNA 3'-end formation were characterized as components of the APT complex that is associated with the core complex of the cleavage/polyadenylation machinery (core-CPF). Other essential factors were identified as independent components: Nrd1p, Nab3p and Sen1p. Here we report that mutations in the conserved box D of snoRNAs and in the snoRNP-specific factor Nop1p interfere with transcription and 3'-end formation of box C/D snoRNAs. We demonstrate that Nop1p is associated with box C/D snoRNA genes and that it interacts with APT components. These data suggest a mechanism of quality control in which efficient transcription and 3'-end formation occur only when nascent snoRNAs are successfully assembled into functional particles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cleavage and polyadenylation factor (CPF) is a multi‐protein complex that functions in pre‐mRNA 3′‐end formation and in the RNA polymerase II (RNAP II) transcription cycle. Ydh1p/Cft2p is an essential component of CPF but its precise role in 3′‐end processing remained unclear. We found that mutations in YDH1 inhibited both the cleavage and the polyadenylation steps of the 3′‐end formation reaction in vitro. Recently, we demonstrated that an important function of CPF lies in the recognition of poly(A) site sequences and RNA binding analyses suggesting that Ydh1p/Cft2p interacts with the poly(A) site region. Here we show that mutant ydh1 strains are deficient in the recognition of the ACT1 cleavage site in vivo. The C‐terminal domain (CTD) of RNAP II plays a major role in coupling 3′‐end processing and transcription. We provide evidence that Ydh1p/Cft2p interacts with the CTD of RNAP II, several other subunits of CPF and with Pcf11p, a component of CF IA. We propose that Ydh1p/Cft2p contributes to the formation of important interaction surfaces that mediate the dynamic association of CPF with RNAP II, the recognition of poly(A) site sequences and the assembly of the polyadenylation machinery on the RNA substrate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pre-mRNA 3′ end formation is tightly linked to upstream and downstream events of eukaryotic mRNA synthesis. The two-step reaction involves endonucleolytic cleavage of the primary transcript followed by poly(A) addition to the upstream cleavage product. To further characterize the putative 3′ end processing endonuclease Ysh1p/Brr5p, we isolated and analyzed a number of new temperature- and cold-sensitive mutant alleles. We show that Ysh1p plays a crucial role in 3′ end formation and in RNA polymerase II (RNAP II) transcription termination on mRNA genes. In addition, we observed a range of additional functional deficiencies in ysh1 mutant strains, which were partially allele-specific. Interestingly, snoRNA 3′ end formation and RNAP II termination were defective on specific snoRNAs in the cold-sensitive ysh1-12 strain. Moreover, we observed the accumulation of several mRNAs including the NRD1 transcript in this mutant. We provide evidence that NRD1 autoregulation is associated with endonucleolytic cleavage and that this process may involve Ysh1p. In addition, the ysh1-12 strain displayed defects in RNA splicing indicating that a functional link may exist between intron removal and 3′ end formation in yeast. These observations suggest that Ysh1p has multiple roles in RNA synthesis and processing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Saccharomyces cerevisiae WD-40 repeat protein Swd2p associates with two functionally distinct multiprotein complexes: the cleavage and polyadenylation factor (CPF) that is involved in pre-mRNA and snoRNA 3′ end formation and the SET1 complex (SET1C) that methylates histone 3 lysine 4. Based on bioinformatic analysis we predict a seven-bladed β-propeller structure for Swd2p proteins. Northern, transcriptional run-on and in vitro 3′ end cleavage analyses suggest that temperature sensitive swd2 strains were defective in 3′ end formation of specific mRNAs and snoRNAs. Protein–protein interaction studies support a role for Swd2p in the assembly of 3′ end formation complexes. Furthermore, histone 3 lysine 4 di-and tri-methylation were adversely affected and telomeres were shortened in swd2 mutants. Underaccumulation of the Set1p methyltransferase accounts for the observed loss of SET1C activity and suggests a requirement for Swd2p for the stability or assembly of this complex. We also provide evidence that the roles of Swd2p as component of CPF and SET1C are functionally independent. Taken together, our results establish a dual requirement for Swd2p in 3′ end formation and histone tail modification.