20 resultados para DC motors

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our present research focuses on kinematic and dynamic modeling of a 3-DOF robotic cutting head for the next generation of CNC machines. The robotic cutting head is one kind of parallel manipulator of 3-PUU type, which has a high flexibility of motion in three-dimensional space. The parallel manipulator consists of three linear servomotors, which drive three connecting rods independently according to the cutting strategy. Being a parallel manipulator, the robotic cutting head has higher stiffness and position accuracy; consequently, higher velocities and accelerations can be achieved. A very suitable application of this mechanism is as a cutting head of a precision machine tool for three-dimensional cutting problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper describes some details of the mechanical and kinematics design of a five-axis mechanism. The design has been utilized to physically realize an industrial-scale five-axis milling machine that can carry a three KW spindle. However, the mechanism could be utilized in other material processing and factory automation applications. The mechanism has five rectilinear joints/axes. Two of these axes are arranged traditionally, i.e. in series, and the other three axes utilize the concept of parallel kinematics. This combination results in a design that allows three translational and two rotational two-mode degrees of freedom (DOFs). The design provides speed, accuracy and cost advantages over traditional five-axis machines. All axes are actuated using linear motors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrical data of two quay cranes, one has a DC drive system and the other has an AC drive system, in actual working conditions at a container terminal are measured and presented in this paper. Peak demand, energy usage, power factor and power quality are examined and compared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminium nitride (AlN) branched nanostructures with tree shapes and sea urchin shapes are synthesized via a one-step improved DC arc discharge plasma method without any catalyst and template. The branched nanostructures with tree shapes and sea urchin shapes can be easily controlled by the location of collection. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies show that the branches of tree shaped nanostructures grow in a sequence of nanowires, nanomultipeds and nanocombs. The growth mechanisms of these branched nanostructures are discussed in detail. The optical properties of AlN branched nanostructures with tree shapes and sea urchin shapes are investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a hybrid neural classifier combining the auto-encoder neural network and the Lattice Vector Quantization (LVQ) model is described. The auto-encoder network is used for dimensionality reduction by projecting high dimensional data into the 2D space. The LVQ model is used for data visualization by forming and adapting the granularity of a data map. The mapped data are employed to predict the target classes of new data samples. To improve classification accuracy, a majority voting scheme is adopted by the hybrid classifier. To demonstrate the applicability of the hybrid classifier, a series of experiments using simulated and real fault data from induction motors is conducted. The results show that the hybrid classifier is able to outperform the Multi-Layer Perceptron neural network, and to produce very good classification accuracy rates for various fault conditions of induction motors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a novel approach to detect and classify comprehensive fault conditions of induction motors using a hybrid fuzzy min-max (FMM) neural network and classification and regression tree (CART) is proposed. The hybrid model, known as FMM-CART, exploits the advantages of both FMM and CART for undertaking data classification and rule extraction problems. A series of real experiments is conducted, whereby the motor current signature analysis method is applied to form a database comprising stator current signatures under different motor conditions. The signal harmonics from the power spectral density are extracted as discriminative input features for fault detection and classification with FMM-CART. A comprehensive list of induction motor fault conditions, viz., broken rotor bars, unbalanced voltages, stator winding faults, and eccentricity problems, has been successfully classified using FMM-CART with good accuracy rates. The results are comparable, if not better, than those reported in the literature. Useful explanatory rules in the form of a decision tree are also elicited from FMM-CART to analyze and understand different fault conditions of induction motors.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, an application of the motor current signature analysis (MCSA) method and the fuzzy min–max (FMM) neural network to detection and classification of induction motor faults is described. The finite element method is employed to generate simulated data pertaining to changes in the stator current signatures under different motor conditions. The MCSA method is then used to process the stator current signatures. Specifically, the power spectral density is employed to extract harmonics features for fault detection and classification with the FMM network. Various types of induction motor faults, which include stator winding faults and eccentricity problems, under different load conditions are experimented. The results are analyzed and compared with those from other methods. The outcomes indicate that the proposed technique is effective for fault detection and diagnosis of induction motors under different conditions.