55 resultados para Arduino (Programmable controller)

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A highly programmable electro-mechanical surface is developed using an effective array of individual pins arranged in a gridform. Each pin can be independently raised or lowered to create a wide range of contoured surfaces. It was found that as the number of elements increased. high levels of accuracy could still be achieved. however the required processing power increased logarithmically. This finding was attributed to the large amounts of data being passed. and subsequently led to a second focus; various methods of data management and flow control techniques within large-scale multi elemental systems. Results indicated a large potential for highly programmable surfaces within industry to provide a computer controlled surface for rapid prototyping. The research also revealed the potential for such a device to be used as a HID within Haptic applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces the concept of terminal attitude guidance as an alternative to precision guidance and uses fuzzy control ideas in designing a control strategy for a pursuer in countering a manoeuvreing target. The fuzzy controller uses only angle measurements in the control strategy and produces satisfactory results in comparison to the LQR or H∞ type guidance controllers, although they were addressed in a precision guidance context. Both 2D and 3D cases have been considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of a steel strip rolling process is to produce high quality steel at a desired thickness.  Thickness reduction is the result of the speed difference between the incoming and the outgoing steel strip and the application of the large normal forces via the backup and the work rolls.  Gauge control of a cold rolled steel strip is achieved using the gaugemeter principle that works adequately for the input gauge changes and the strip hardness changes.  However, the compensation of some factors is problematic, for example, eccentricity of the backup rolls.  This cyclic eccentricity effect causes a gauge deviation, but more importantly, a signal is passed to the gap position control so to increase the eccentricity deviation.  Consequently, the required high product tolerances are severely limited by the presence of the roll eccentricity effects.
In this paper a direct model reference adaptive control (MRAC) scheme with dynamically constructed neural controller was used.  The aim here is to find the simplest controller structure capable of achieving an optimal performance.  The stability of the adaptive neural control scheme (i.e. the requirement of persistency of excitation and bounded learning rates) is addressed by using as the inputs to the reference model the plant's state variables.  In such a case, excitation is due to actual plant signals (states) affected by plant disturbances and noise.  In addition, a reference model in the form of a filter with a desired transfer function using Modulus Optimum design was used to ensure variance in the desired dynamic characteristics of the system.  The gradually decreasing learning rate employed by the neural controller in this paper is aimed at eliminating controller instability resulting from over-aggressive control.  The moving target problem (i.e. the difficulty of global neural networks to perfrom several separate computational tasks in closed -loop control) is addressed by the localized architecture of the controller.  The above control scheme and learning algorithm offers a method for automatic discovery of an efficient controller.
The resulting neural controller produces an excellent disturbance rejection in both cases of eccentricity and hardness disturbances, reducing the gauge deviation due to eccentricity disturbance from 33.36% to 4.57% on average, and the gauge deviation due to hardness disturbance from 12.59% to 2.08%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research details methods to improve upon current worst-case message response time analysis of CAN networks. Also, through the development of a CAN network model, and using modern simulation software, methods were shown to provide more realistic analyses of both sporadic and periodic messages on CAN networks prior to implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic Algorithm is an important optimization technique, though its application in Fuzzy system is usually limited by problems like local optimal and premature convergence. With an aim to improve the performance of simple Genetic Algorithm, we propose a multi-population genetic algorithm MP-GA which uses two populations collaborating with each other, and apply it to fuzzy controller design to optimize its control rules. The simulation results of Inverted Pendulum demonstrate the effectiveness of this proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the portable entertainment and mobility technologies migrate into the car, driver distraction has become recognized as a major factor in road crashes around the world. To help alert drivers to their distraction, active safety technologies such as lane departure warning systems and collision avoidance systems are being implemented. One issue with the implementation of yet another technology into the vehicle is how to cut through the competing demands of the mobile phone, navigation systems and other technologies. Haptic alerts present just such a method that may enable the system to short-circuit the normal auditory or visual communication channels. This paper presents a low cost haptic steering wheel controller that has been designed developed and tested and may be used as a communication device by a lane departure, collision avoidance, or other type of safety system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper focuses on a parallel hybrid electric vehicle. It first develops a model for the vehicle using the backward-looking approach where the flow of energy starts from wheels and spreads towards engine and electric motor. Next, a fuzzy logic-based strategy is developed to control the operation of the vehicle. The objectives of the controller include managing the energy flow from engine and electric motor, controlling transmission ratio, adjusting speed, and sustaining battery's state of charge. The controller examines current vehicle speed, demand torque, slope difference, state of charge of battery, and engine and electric motor rotation speeds. Then, it determines the best values for continuous variable transmission ratio, speed, and torque. A slope window scheme is also developed to take into account the look-ahead slope information and determine the best vehicle speed for better fuel economy. The developed model and control strategy are simulated. The simulation results are presented and discussed. It is shown that the use of the proposed fuzzy controller reduces fuel consumption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Creating a highly programmable surface operating at relatively high speed and in real time is an area of research with many challenges. Such a system has applications in the field of optical telescopes, product manufacturing, and giant 3D-screens and billboards for advertising and artwork. This paper covers certain aspects of a keynote presentation at ISDT 2010 including system design, modularity, programmability and the system control intelligence. An overview of the system architecture, actuator design, electronics and distributed control will provide an insight into how the system is controlled and self-tuned for a number of applications. A simulation environment that has been developed to streamline system reconfiguration will also be presented, demonstrating translation of complex mathematical functions into 3D shapes virtually before being displayed on the physical surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents design and simulation investigation of a fuzzy controller and a conventional PID controller for a servo system. First, a servo system is considered and its stability is discussed. Then, a PID controller that is tuned by the Ziegler-Nichols method is formulated for controlling the servo system. To improve the servo system's dynamic response parameters, a fuzzy controller is then proposed for controlling the system. A performance comparison between the fuzzy and the PID controllers are carried out. The results are presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research has explored methods for developing a large interactive dynamic 3D surface using an array of interconnected pneumatically actuated cylinders. People can control the surface using body movement, sound or pre-programmed sequences. The main contribution is a method for accurately positioning cylinders without the need for position feedback.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers the problem of designing an observer-based output feedback controller to exponentially stabilize a class of linear systems with an interval time-varying delay in the state vector. The delay is assumed to vary within an interval with known lower and upper bounds. The time-varying delay is not required to be differentiable, nor should its lower bound be zero. By constructing a set of Lyapunov–Krasovskii functionals and utilizing the Newton–Leibniz formula, a delay-dependent stabilizability condition which is expressed in terms of Linear Matrix Inequalities (LMIs) is derived to ensure the closed-loop system is exponentially stable with a prescribed α-convergence rate. The design of an observerbased output feedback controller can be carried out in a systematic and computationally efficient manner via the use of an LMI-based algorithm. A numerical example is given to illustrate the design procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Control of polymerization reactors is a challenging issue for researchers due to the complex reaction mechanisms. A lot of reactions occur simultaneously during polymerization. This leads to a polymerization system that is highly nonlinear in nature. In this work, a nonlinear advanced controller, named fuzzy logic controller (FLC), is developed for monitoring the batch free radical polymerization of polystyrene (PS) reactor. Temperature is used as an intermediate control variable to control polymer quality, because the products quality and quantity of polymer are directly depends on temperature. Different FLCs are developed through changing the number of fuzzy membership functions (MFs) for inputs and output. The final tuned FLC results are compared with the results of another advanced controller, named neural network based model predictive controller (NN-MPC). The simulation results reveal that the FLC performance is better than NN-MPC in terms of quantitative and qualitative performance criterion.