86 resultados para block designs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose - This research is based upon the assumption that the empirical research designs and the scientific identity of a journal are related. The objective is to review and evaluate the empirical research design of papers to determine the scientific identity of a selection of academic marketing journals. Design/methodology/approach – The journal sample consists of the Australasian Marketing Journal (AMJ), the European Journal of Marketing (EJM) and the Journal of Marketing (JM). The review and evaluation considers a six-year period, namely 2000-2005. The content analysis consisted of 811 papers. Findings – The scientific identity of JM may be seen as built upon quantitative research designs and the North American paradigm of research values. The scientific identity of AMJ is based upon a mix of empirical research designs and the Australian paradigm of research values. The scientific identity of EJM is also based upon a mix of empirical research designs, but a multi-continental paradigm of research values. Research limitations/implications – The leading continental journals in marketing maintain a scientific identity based upon the continental paradigm of research values. If it is driven to the extremes, a paradigmatic myopia and inertia of research designs may evolve that limit the scientific identity to be dogmatic and narrow-focused rather than variable and broad-focused. Originality/value – A cross-continental eview and evaluation of research designs and scientific identity of academic marketing journals is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesostructurally ordered inorganic–organic hybrid composite materials were successfully synthesized by utilizing a low-molecular-weight amphiphilic polyethylene-block-poly(ethylene oxide) (PE–PEO) diblock copolymer as the directing agent. The hybrid composites were formed via the sol–gel reaction of inorganic precursor tetraethoxysilane (TEOS) in an acidic ethanol/water solution with various amounts of PE–PEO. In these composite materials, the hydrophobic PE block of the PE–PEO copolymer forms separate microphase on the nanoscales within the rigid matrix of silica network. The crystallization of the PE block is strictly restricted within the microphase by the rigid silica matrix and takes place through homogeneous nucleation under the nanoscale confinement environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides a procedure to address all three phases of the design for cellular manufacturing namely parts/machines grouping, intra-cell and inter-cell layout designs concurrently. It provides a platform to investigate the impact of the cell formation method on intracell and inter-cell layout designs and vice versa by generating multiple efficient layout designs for different cell partitioning strategies. This approach enables the decision maker to have wider choices with regard to the different number of cells and to assess various criteria such as travelling cost, duplication of machines, space requirement against each alternative. The performance of the model is demonstrated by applying it to an example selected from literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A brachiopod fauna including 19 species of 17 genera from an exotic block in the Indus–Tsangpo suture zone in southern Tibet is described and illustrated. The brachiopod fauna is dominated by Martinia elegans and two new taxa: Jinomarginifera lhazeensis gen. et sp. nov. and Zhejiangospirifer giganteus sp. nov. The fauna is closely comparable with those from the middle and upper parts of the Wargal Formation and the Chhidru Formation in the Salt Range of Pakistan, the Chitichun Limestone in southern Tibet, and the Basleo area of West Timor, and these correlations suggest a Wuchiapingian age. The fauna exhibits substantial links with both peri–Gondwanan and Cathaysian faunas, which may imply that it is a seamount biota originally located in the southern margin of the Neotethys during the Late Permian, and was later (in the early Cenozoic) displaced and became sandwiched into younger marine deposits in the collision process between India and Eurasia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A total of 17 brachiopod species belonging to 15 genera are recorded from a limestone block of about 3×4 km2 in the Indus–Tsangbo suture zone at Xiukang in Lhaze County of Tibet. The brachiopod fauna generally indicates a Late Guadalupian age (late Wordian–Capitanian, late Middle Permian) based on its association with the Timorites-bearing ammonoid fauna and the presence of the brachiopod Urushtenoidea crenulata. Palaeobiogeographically, the fauna exhibits transitional/mixed characters between the warm-water Cathaysian and cold to temperate Gondwanan faunas and may have developed on a carbonate build-up or seamount on the oceanic crust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phase behavior, hydrogen bonding interactions and morphology of poly(hydroxyether of bisphenol A) (phenoxy) and poly(var epsilon-caprolactone)-block-poly(2-vinyl pyridine) (PCL-b-P2VP) were investigated using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, optical microscopy and atomic force microscopy (AFM). In this A-b-B/C type block copolymer/homopolymer system, both P2VP and PCL blocks have favorable intermolecular interaction towards phenoxy via hydrogen bonding. However, the hydrogen bonding between P2VP and phenoxy is significantly stronger than that between PCL and phenoxy. Selective hydrogen bonding between phenoxy/P2VP pair at lower phenoxy contents and co-existence of two competitive hydrogen bonding interactions between phenoxy/P2VP and phenoxy/PCL pairs at higher phenoxy contents were observed in the blends. This leads to the formation of a variety of composition dependent nanostructures including wormlike, hierarchical and core–shell morphologies. The blends became homogeneous at 95 wt% phenoxy where both blocks of the PCL-b-P2VP were miscible with phenoxy due to hydrogen bonding. In the end, a model was proposed to explain the microphase morphology of blends based on the experimental results obtained. The swelling of the PCL-b-P2VP block copolymer by phenoxy due to selective hydrogen bonding causes formation of different microphases

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured thermoset blends were prepared based on a bisphenol A-type epoxy resin and an amphiphilic reactive diblock copolymer, namely polyisoprene-block-poly(4-vinyl pyridine) (PI-P4VP). Infrared spectra revealed that the P4VP block of the diblock copolymer reacted with the epoxy monomer. However, the non-reactive hydrophobic PI block of the diblock copolymer formed a separate microphase on the nanoscale. Ozone treatment was used to create nanoporosity in nanostructured epoxy/PI-P4VP blends via selective removal of the PI microphase and lead to nanoporous epoxy thermosets; disordered nanopores with the average diameter of about 60 nm were uniformly distributed in the blend with 50 wt% PI-P4VP. Multi-scale phase separation with a distinctly different morphology was observed at the air/sample interface due to the interfacial effects, whereas only uniform microphase separated morphology at the nanoscale was found in the bulk of the blend.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured complexes were prepared from poly(ε-caprolactone)-block-poly(2-vinylpyridine) (PCL-b-P2VP) and poly(4-vinylphenol) (PVPh) in tetrahydrofuran (THF). The phase behavior, specific interactions, and morphology were investigated using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, optical microscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS). In this A-b-B/C type block copolymer/homopolymer system, both blocks of the PCL-b-P2VP block copolymer have favorable intermolecular interaction toward PVPh via hydrogen bonding, but the interaction between P2VP block and PVPh is significantly stronger than that between PCL block and PVPh. It was found that the disparity in competitive intermolecular interactions, specifically PVPh and P2VP block interact strongly whereas PVPh and PCL block interact weakly, leads to the formation of a variety of nanostructures depending on PVPh concentration. Spherical micelles of 30−40 nm in diameter were obtained in the complex with 10 wt % PVPh, followed by wormlike micelles with size in the order of 40−50 nm in the complexes with 30−60 wt % PVPh. At low PVPh concentrations, PCL interacts weakly with PVPh, whereas in the complexes containing more than 20 wt % PVPh, the PCL block began to interact considerably with PVPh, leading to the formation of composition-dependent nanostructures. The complex becomes homogeneous with PVPh content beyond 60 wt %, since a sufficient amount of PVPh is available to form hydrogen bonds with both PCL and P2VP. Finally, a model was proposed to explain the self-assembly and microphase morphology of these complexes based on the experimental results obtained. The competitive hydrogen-bonding interactions cause the self-assembly and formation of different microphase morphologies.