60 resultados para Hexapod robot


Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most expensive parts of underwater robotics is the sensors. This paper looks at modifying off the shelf components to create a sensor suite on a small budget. A big saving is made with sonar using a cheap commercial product to create a four sonar array. A depth sensor and acceleration navigation system are also developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Haptic human-machine interfaces and similar techniques to enhancing human-robotic interaction offer significant potential over conventional approaches. This work considers achieving intuitive motion control of a tracked mobile robotic platform utilising a 3D virtual haptic cone. The 3D haptic cone extends upon existing approaches by introducing of a third dimension to the haptic control surface. It is suggested that this approach improves upon existing methods by providing the human operator with an intuitive method for issuing vehicle motion commands whilst still facilitating simultaneous real-time haptic augmentation regarding the task at hand. The presented approach is considered in the context of mobile robotic teleoperation however offers potential across many applications. Using the 2D haptic control surface as a benchmark, preliminary evaluation of the 3D haptic cone approach demonstrates a significant improvement in the ability to command the robot to cease motion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Haptic human-machine interfaces and similar techniques to enhancing human-robotic interaction offer significant potential over conventional approaches. This work considers achieving intuitive motion control of a tracked mobile robotic platform utilising a 3D virtual haptic cone. The 3D haptic cone extends upon existing approaches by introducing of a third dimension to the haptic control surface. It is suggested that this approach improves upon existing methods by providing the human operator with an intuitive method for issuing vehicle motion commands whilst still facilitating simultaneous real-time haptic augmentation regarding the task at hand. The presented approach is considered in the context of mobile robotic teleoperation however offers potential across many applications. Using the 2D haptic control surface as a benchmark, preliminary evaluation of the 3D haptic cone approach demonstrates a significant improvement in the ability to command the robot to cease motion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The swimming backward for biomimetic carangiform robot fish is analyzed and implemented in this paper. The swimming law of the carangiform robot fish is modified according to the European Eel swimming mode based on the multiple-link structure to implement the backward motion. The motion mode difference between the eel and carangiform fish is discussed, and a qualitative kinematic analysis of the carangiform swimming in water is given to analyze the propulsion produced by the undulation of the multi-links tail. The experiments conducted demonstrate the good performance of the proposed method, and the results are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the integral terminal sliding mode cooperative control of multi-robot networks. Here, we first propose an integral terminal sliding mode surface for a class of first order systems. Then, we prove that finite time consensus tracking of multi-robot networks can be achieved on this integral terminal sliding mode surface. Simulation results are presented to validate the analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a novel design of a biomimetic robot fish is presented. Based on the propulsion and maneuvering mechanisms of real fishes, a tail mechanical structure with cams and connecting rods for fitting carangiform fish body wave is designed, which provides the main propulsion. Two pectoral fins are mounted, and each pectoral fin can flap separately and rotate freely. Coordinating the movements of the tail and pectoral fins, the robot fish can simulate the movements of fishes in water. In order to obtain the necessary environmental information, several kinds of sensors (video, infrared, temperature, pressure and PH value sensors) were mounted. Finally, the realization of the robot fish is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A traffic control device in the form of a humanoid character robot, doll or dummy is used to warn driver of danger ahead on the road. The device can be used on roads, streets and in other sites where there are moving vehicles. The robotic device informs drivers of impending danger by moving its arms and sounding an acoustic alarm. In this way the robot can simulate a policeman or road flagging operator. The device may also include speed detection and preferably speed indication means. The robot may make decisions based on the detected speed of a vehicle and the limit for the area in operating the arms and sound warning means. The robot may also be equipped with a camera or video. The robot may also be controlled wirelessly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When an assistant robotic manipulator cooperatively performs a task with a human and the task is required to be highly reliable, then fault tolerance is essential. To achieve the fault tolerance force within the human robot cooperation, it is required to map the effects of the faulty joint of the robot into the manipulator’s healthy joints’ torque space and the human force. The objective is to optimally maintain the cooperative force within the human robot cooperation. This paper aims to analyze the fault tolerant force within the cooperation and two frameworks are proposed. Then they have been validated through a fault scenario. Finally, the minimum force jump which is the optimal fault tolerance has been achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a three-dimensional (3D) computational fluid dynamic simulation of a biomimetic robot fish. Fluent and user-defined function (UDF) is used to define the movement of the robot fish and the Dynamic Mesh is used to mimic the fish swimming in water. Hydrodynamic analysis is done in this paper too. The aim of this study is to get comparative data about hydrodynamic properties of those guidelines to improve the design, remote control and flexibility of the underwater robot fish.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mission and path planning for multiple robots in dynamic environments is required when multiple mobile robots or unmanned vehicles are used for geographically distributed tasks. Assigning tasks and paths for robots for cooperatively accomplishing a mission of reaching to number of target points are addressed in this paper. The methodology that is proposed is based on using an adjustable force field which is suitable for dynamic environment. From the force field analysis, the decisions to assign tasks for each robot are then made. The force field is also used to plan a collision free path for each robot. Adjustable weights for the force field model are proposed to satisfy the constraints of the motion. In this research, the constraints are the cooperation of the robots, the precedence between the targets and between robots, and the discrimination between different obstacles. Two simulations for mission and path planning in 2D and 3D dynamic spaces with multiple robots are presented based on the proposed adjustable force filed. The result of the mission and path planning for three robots cooperatively doing eight target points are shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Firstly, this paper introduces the OzTug mobile robot developed to autonomously manoeuvre large loads within a manufacturing environment. The mobile robot utilizes differential drive and necessary design criteria includes low-cost, mechanical robustness, and the ability to manoeuvre loads ranging up to 2000kg. The robot is configured to follow a predefined trajectory while maintaining the forward velocity of a user-specified velocity profile. A vision-based fuzzy logic line following controller enables the robot to track the paths on the floor of the manufacturing environment. Secondly, in order to tow large loads along predefined paths three different robot-load configurations are proposed. Simulation within the Webots environment was performed in order to empirically evaluate the three different robot-load configurations. The simulation results demonstrate the cost-performance trade-off of two of the approaches.