2 resultados para GRAVITATIONAL COLLAPSE
em Dalarna University College Electronic Archive
Resumo:
In this work, I consider the center-of-mass wave function for a homogenous sphere under the influence of the self-interaction due to Newtonian gravity. I solve for the ground state numerically and calculate the average radius as a measure of its size. For small masses, M≲10−17 kg, the radial size is independent of density, and the ground state extends beyond the extent of the sphere. For masses larger than this, the ground state is contained within the sphere and to a good approximation given by the solution for an effective radial harmonic-oscillator potential. This work thus determines the limits of applicability of the point-mass Newton Schrödinger equations for spherical masses. In addition, I calculate the fringe visibility for matter-wave interferometry and find that in the low-mass case, interferometry can in principle be performed, whereas for the latter case, it becomes impossible. Based on this, I discuss this transition as a possible boundary for the quantum-classical crossover, independent of the usually evoked environmental decoherence. The two regimes meet at sphere sizes R≈10−7 m, and the density of the material causes only minor variations in this value.
Resumo:
Reindeer herding in Sweden is a form of pastoralism practised by the indigenous Sami population. The economy is mainly based on meat production. Herd size is generally regulated by harvest in order not to overuse grazing ranges and keep a productive herd. Nonetheless, herd growth and room for harvest is currently small in many areas. Negative herd growth and low harvest rate were observed in one of two herds in a reindeer herding community in Central Sweden. The herds (A and B) used the same ranges from April until the autumn gathering in October-December, but were separated on different ranges over winter. Analyses of capture-recapture for 723 adult female reindeer over five years (2007-2012) revealed high annual losses (7.1% and 18.4%, for herd A and B respectively). A continuing decline in the total reindeer number in herd B demonstrated an inability to maintain the herd size in spite of a very small harvest. An estimated breakpoint for when herd size cannot be kept stable confirmed that the observed female mortality rate in herd B represented a state of herd collapse. Lower calving success in herd B compared to A indicated differences in winter foraging conditions. However, we found only minor differences in animal body condition between the herds in autumn. We found no evidence that a lower autumn body mass generally increased the risk for a female of dying from one autumn to the next. We conclude that the prime driver of the on-going collapse of herd B is not high animal density or poor body condition. Accidents or disease seem unlikely as major causes of mortality. Predation, primarily by lynx and wolverine, appears to be the most plausible reason for the high female mortality and state of collapse in the studied reindeer herding community.