75 resultados para Mobile app
em CentAUR: Central Archive University of Reading - UK
Resumo:
This case study reports on the development of a bespoke mobile recording app for collating records of biodiversity sightings on a University campus. This innovative project was achieved through a multi-disciplinary partnership of staff and students. It is hoped that the app itself will benefit lecturers by streamlining data collection during teaching and learning activities, whilst engaging students and highlighting the wealth of diversity available on campus
Resumo:
Mobile devices can enhance undergraduate research projects and students’ research capabilities. The use of mobile devices such as tablet computers will not automatically make undergraduates better researchers, but their use should make investigations, writing, and publishing more effective and may even save students time. We have explored some of the possibilities of using “tablets” and “smartphones” to aid the research and inquiry process in geography and bioscience fieldwork. We provide two case studies as illustration of how students working in small research groups use mobile devices to gather and analyze primary data in field-based inquiry. Since April 2010, Apple’s iPad has changed the way people behave in the digital world and how they access their music, watch videos, or read their email much as the entrepreneurs Steve Jobs and Jonathan Ive intended. Now with “apps” and “the cloud” and the ubiquitous references to them appearing in the press and on TV, academics’ use of tablets is also having an impact on education and research. In our discussion we will refer to use of smartphones such as the iPhone, iPod, and Android devices under the term “tablet”. Android and Microsoft devices may not offer the same facilities as the iPad/iphone, but many app producers now provide versions for several operating systems. Smartphones are becoming more affordable and ubiquitous (Melhuish and Falloon 2010), but a recent study of undergraduate students (Woodcock et al. 2012, 1) found that many students who own smartphones are “largely unaware of their potential to support learning”. Importantly, however, students were found to be “interested in and open to the potential as they become familiar with the possibilities” (Woodcock et al. 2012). Smartphones and iPads could be better utilized than laptops when conducting research in the field because of their portability (Welsh and France 2012). It is imperative for faculty to provide their students with opportunities to discover and employ the potential uses of mobile devices in their learning. However, it is not only the convenience of the iPad or tablet devices or smartphones we wish to promote, but also a way of thinking and behaving digitally. We essentially suggest that making a tablet the center of research increases the connections between related research activities.
Resumo:
The increasing importance of employability in Higher Education curricula and the prevalence of using mobile devices for fieldbased learning prompted an investigation into student awareness of the relationship between the use of mobile apps for learning and the development of graduate attributes (GAs) (and the link to employability). The results from post-fieldwork focus groups from four field courses indicated that students could make clear links between the use of a variety of mobile apps and graduate attribute development. The study suggests a number of mobile apps can align simultaneously with more than one graduate attribute. Furthermore, prior experience and the context of use can influence students’ perceptions of an app and its link with different GAs.
Resumo:
It has been suggested that few students graduate with the skills required for many ecological careers, as field-based learning is said to be in decline in academic institutions. Here, we asked if mobile technology could improve field-based learning, using ability to identify birds as the study metric. We divided a class of ninety-one undergraduate students into two groups for field-based sessions where they were taught bird identification skills. The first group has access to a traditional identification book and the second group were provided with an identification app. We found no difference between the groups in the ability of students to identify birds after three field sessions. Furthermore, we found that students using the traditional book were significantly more likely to identify novel species. Therefore, we find no evidence that mobile technology improved students’ ability to retain what they experienced in the field; indeed, there is evidence that traditional field guides were more useful to students as they attempted to identify new species. Nevertheless, students felt positively about using their own smartphone devices for learning, highlighting that while apps did not lead to an improvement in bird identification ability, they gave greater accessibility to relevant information outside allocated teaching times.
Resumo:
The intelligent controlling mechanism of a typical mobile robot is usually a computer system. Research is however now ongoing in which biological neural networks are being cultured and trained to act as the brain of an interactive real world robot – thereby either completely replacing or operating in a cooperative fashion with a computer system. Studying such neural systems can give a distinct insight into biological neural structures and therefore such research has immediate medical implications. The principal aims of the present research are to assess the computational and learning capacity of dissociated cultured neuronal networks with a view to advancing network level processing of artificial neural networks. This will be approached by the creation of an artificial hybrid system (animat) involving closed loop control of a mobile robot by a dissociated culture of rat neurons. This paper details the components of the overall animat closed loop system architecture and reports on the evaluation of the results from preliminary real-life and simulated robot experiments.
Resumo:
This paper presents the development of an indoor localization system using camera vision. The localization system has a capability to determine 2D coordinate (x, y) for a team of mobile robots, Miabot. The experimental results show that the system outperforms our existing sonar localizer both in accuracy and a precision.
Resumo:
Many producers of geographic information are now disseminating their data using open web service protocols, notably those published by the Open Geospatial Consortium. There are many challenges inherent in running robust and reliable services at reasonable cost. Cloud computing provides a new kind of scalable infrastructure that could address many of these challenges. In this study we implement a Web Map Service for raster imagery within the Google App Engine environment. We discuss the challenges of developing GIS applications within this framework and the performance characteristics of the implementation. Results show that the application scales well to multiple simultaneous users and performance will be adequate for many applications, although concerns remain over issues such as latency spikes. We discuss the feasibility of implementing services within the free usage quotas of Google App Engine and the possibility of extending the approaches in this paper to other GIS applications.
Resumo:
The intelligent controlling mechanism of a typical mobile robot is usually a computer system. Some recent research is ongoing in which biological neurons are being cultured and trained to act as the brain of an interactive real world robot�thereby either completely replacing, or operating in a cooperative fashion with, a computer system. Studying such hybrid systems can provide distinct insights into the operation of biological neural structures, and therefore, such research has immediate medical implications as well as enormous potential in robotics. The main aim of the research is to assess the computational and learning capacity of dissociated cultured neuronal networks. A hybrid system incorporating closed-loop control of a mobile robot by a dissociated culture of neurons has been created. The system is flexible and allows for closed-loop operation, either with hardware robot or its software simulation. The paper provides an overview of the problem area, gives an idea of the breadth of present ongoing research, establises a new system architecture and, as an example, reports on the results of conducted experiments with real-life robots.
Resumo:
Many ecosystem services are delivered by organisms that depend on habitats that are segregated spatially or temporally from the location where services are provided. Management of mobile organisms contributing to ecosystem services requires consideration not only of the local scale where services are delivered, but also the distribution of resources at the landscape scale, and the foraging ranges and dispersal movements of the mobile agents. We develop a conceptual model for exploring how one such mobile-agent-based ecosystem service (MABES), pollination, is affected by land-use change, and then generalize the model to other MABES. The model includes interactions and feedbacks among policies affecting land use, market forces and the biology of the organisms involved. Animal-mediated pollination contributes to the production of goods of value to humans such as crops; it also bolsters reproduction of wild plants on which other services or service-providing organisms depend. About one-third of crop production depends on animal pollinators, while 60-90% of plant species require an animal pollinator. The sensitivity of mobile organisms to ecological factors that operate across spatial scales makes the services provided by a given community of mobile agents highly contextual. Services vary, depending on the spatial and temporal distribution of resources surrounding the site, and on biotic interactions occurring locally, such as competition among pollinators for resources, and among plants for pollinators. The value of the resulting goods or services may feed back via market-based forces to influence land-use policies, which in turn influence land management practices that alter local habitat conditions and landscape structure. Developing conceptual models for MABES aids in identifying knowledge gaps, determining research priorities, and targeting interventions that can be applied in an adaptive management context.
Resumo:
Increasingly, we regard the genome as a site and source of genetic conflict. This fascinating 'bottom-up' view brings up appealing connections between genome biology and whole-organism ecology, in which populations of elements compete with one another in their genomic habitat. Unlike other habitats, though, a host genome has its own evolutionary interests and is often able to defend itself against molecular parasites. Most well-studied organisms employ strategies to protect their genomes against the harmful effects of genomic parasites, including methylation, various pathways of RNA interference, and more unusual tricks such as repeat induced point-mutation (RIP). These genome defence systems are not obscure biological curiosities, but fundamentally important to the integrity and cohesion of the genome, and exert a powerful influence on genome evolution.
Resumo:
Some families of mammalian interspersed repetitive DNA, such as the Alu SINE sequence, appear to have evolved by the serial replacement of one active sequence with another, consistent with there being a single source of transposition: the "master gene." Alternative models, in which multiple source sequences are simultaneously active, have been called "transposon models." Transposon models differ in the proportion of elements that are active and in whether inactivation occurs at the moment of transposition or later. Here we examine the predictions of various types of transposon model regarding the patterns of sequence variation expected at an equilibrium between transposition, inactivation, and deletion. Under the master gene model, all bifurcations in the true tree of elements occur in a single lineage. We show that this property will also hold approximately for transposon models in which most elements are inactive and where at least some of the inactivation events occur after transposition. Such tree shapes are therefore not conclusive evidence for a single source of transposition.