54 resultados para Orthogonal polynomials of a discrete variable
Resumo:
This paper introduces a new adaptive nonlinear equalizer relying on a radial basis function (RBF) model, which is designed based on the minimum bit error rate (MBER) criterion, in the system setting of the intersymbol interference channel plus a co-channel interference. Our proposed algorithm is referred to as the on-line mixture of Gaussians estimator aided MBER (OMG-MBER) equalizer. Specifically, a mixture of Gaussians based probability density function (PDF) estimator is used to model the PDF of the decision variable, for which a novel on-line PDF update algorithm is derived to track the incoming data. With the aid of this novel on-line mixture of Gaussians based sample-by-sample updated PDF estimator, our adaptive nonlinear equalizer is capable of updating its equalizer’s parameters sample by sample to aim directly at minimizing the RBF nonlinear equalizer’s achievable bit error rate (BER). The proposed OMG-MBER equalizer significantly outperforms the existing on-line nonlinear MBER equalizer, known as the least bit error rate equalizer, in terms of both the convergence speed and the achievable BER, as is confirmed in our simulation study
Resumo:
tWe develop an orthogonal forward selection (OFS) approach to construct radial basis function (RBF)network classifiers for two-class problems. Our approach integrates several concepts in probabilisticmodelling, including cross validation, mutual information and Bayesian hyperparameter fitting. At eachstage of the OFS procedure, one model term is selected by maximising the leave-one-out mutual infor-mation (LOOMI) between the classifier’s predicted class labels and the true class labels. We derive theformula of LOOMI within the OFS framework so that the LOOMI can be evaluated efficiently for modelterm selection. Furthermore, a Bayesian procedure of hyperparameter fitting is also integrated into theeach stage of the OFS to infer the l2-norm based local regularisation parameter from the data. Since eachforward stage is effectively fitting of a one-variable model, this task is very fast. The classifier construc-tion procedure is automatically terminated without the need of using additional stopping criterion toyield very sparse RBF classifiers with excellent classification generalisation performance, which is par-ticular useful for the noisy data sets with highly overlapping class distribution. A number of benchmarkexamples are employed to demonstrate the effectiveness of our proposed approach.
Resumo:
The aim of this study was to investigate the effects of numerous milk compositional factors on milk coagulation properties using Partial Least Squares (PLS). Milk from herds of Jersey and Holstein-Friesian cattle was collected across the year and blended (n=55), to maximize variation in composition and coagulation. The milk was analysed for casein, protein, fat, titratable acidity, lactose, Ca2+, urea content, micelles size, fat globule size, somatic cell count and pH. Milk coagulation properties were defined as coagulation time, curd firmness and curd firmness rate measured by a controlled strain rheometer. The models derived from PLS had higher predictive power than previous models demonstrating the value of measuring more milk components. In addition to the well-established relationships with casein and protein levels, CMS and fat globule size were found to have as strong impact on all of the three models. The study also found a positive impact of fat on milk coagulation properties and a strong relationship between lactose and curd firmness, and urea and curd firmness rate, all of which warrant further investigation due to current lack of knowledge of the underlying mechanism. These findings demonstrate the importance of using a wider range of milk compositional variable for the prediction of the milk coagulation properties, and hence as indicators of milk suitability for cheese making.
Resumo:
We consider the two-dimensional Helmholtz equation with constant coefficients on a domain with piecewise analytic boundary, modelling the scattering of acoustic waves at a sound-soft obstacle. Our discretisation relies on the Trefftz-discontinuous Galerkin approach with plane wave basis functions on meshes with very general element shapes, geometrically graded towards domain corners. We prove exponential convergence of the discrete solution in terms of number of unknowns.
Resumo:
In this work we construct reliable a posteriori estimates for some semi- (spatially) discrete discontinuous Galerkin schemes applied to nonlinear systems of hyperbolic conservation laws. We make use of appropriate reconstructions of the discrete solution together with the relative entropy stability framework, which leads to error control in the case of smooth solutions. The methodology we use is quite general and allows for a posteriori control of discontinuous Galerkin schemes with standard flux choices which appear in the approximation of conservation laws. In addition to the analysis, we conduct some numerical benchmarking to test the robustness of the resultant estimator.
Resumo:
This special issue is focused on the assessment of algorithms for the observation of Earth’s climate from environ- mental satellites. Climate data records derived by remote sensing are increasingly a key source of insight into the workings of and changes in Earth’s climate system. Producers of data sets must devote considerable effort and expertise to maximise the true climate signals in their products and minimise effects of data processing choices and changing sensors. A key choice is the selection of algorithm(s) for classification and/or retrieval of the climate variable. Within the European Space Agency Climate Change Initiative, science teams undertook systematic assessment of algorithms for a range of essential climate variables. The papers in the special issue report some of these exercises (for ocean colour, aerosol, ozone, greenhouse gases, clouds, soil moisture, sea surface temper- ature and glaciers). The contributions show that assessment exercises must be designed with care, considering issues such as the relative importance of different aspects of data quality (accuracy, precision, stability, sensitivity, coverage, etc.), the availability and degree of independence of validation data and the limitations of validation in characterising some important aspects of data (such as long-term stability or spatial coherence). As well as re- quiring a significant investment of expertise and effort, systematic comparisons are found to be highly valuable. They reveal the relative strengths and weaknesses of different algorithmic approaches under different observa- tional contexts, and help ensure that scientific conclusions drawn from climate data records are not influenced by observational artifacts, but are robust.
Resumo:
Rapidly-flowing sectors of an ice sheet (ice streams) can play ail important role in abrupt climate change through tile delivery of icebergs and meltwater and tile Subsequent disruption of ocean thermohaline circulation (e.g., the North Atlantic's Heinrich events). Recently, several cores have been raised from the Arctic Ocean which document the existence of massive ice export events during tile Late Pleistocene and whose provenance has been linked to Source regions in the Canadian Arctic Archipelago. In this paper, satellite imagery is used to map glacial geomorphology in the vicinity of Victoria Island, Banks Island and Prince of Wales Island (Canadian Arctic) in order to reconstruct ice flow patterns in the highly complex glacial landscape. A total of 88 discrete flow-sets are mapped and of these, 13 exhibit the characteristic geomorphology of palaeo-ice streams (i.e., parallel patterns of large, highly elongated mega-scale glacial lineations forming a convergent flow pattern with abrupt lateral margins). Previous studies by other workers and cross-cutting relationships indicate that the majority of these ice streams are relatively young and operated during or immediately prior to deglaciation. Our new mapping, however, documents a large (> 700 km long; 110 km wide) and relatively old ice stream imprint centred in M'Clintock Channel and converging into Viscount Melville Sound. A trough mouth fan located on the continental shelf Suggests that it extended along M'Clure Strait and was grounded at tile shelf edge. The location of the M'Clure Strait Ice Stream exactly matches the Source area of 4 (possibly 5) major ice export events recorded in core PS 1230 raised from Fram Strait, the major ice exit for the Arctic Ocean. These ice export events occur at similar to 12.9, similar to 15.6, similar to 22 and 29.8 ka (C-14 yr BP) and we argue that they record vigorous episodes of activity of the M'Clure Strait Ice Stream. The timing of these events is remarkably similar to the North Atlantic's Heinrich events and we take this as evidence that the M'Clure Strait Ice Stream was also activated around the same time. This may hold important implications for tile cause of the North Atlantic's Heinrich events and hints at tile possibility of a pall-ice sheet response. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this paper we consider the impedance boundary value problem for the Helmholtz equation in a half-plane with piecewise constant boundary data, a problem which models, for example, outdoor sound propagation over inhomogeneous. at terrain. To achieve good approximation at high frequencies with a relatively low number of degrees of freedom, we propose a novel Galerkin boundary element method, using a graded mesh with smaller elements adjacent to discontinuities in impedance and a special set of basis functions so that, on each element, the approximation space contains polynomials ( of degree.) multiplied by traces of plane waves on the boundary. We prove stability and convergence and show that the error in computing the total acoustic field is O( N-(v+1) log(1/2) N), where the number of degrees of freedom is proportional to N logN. This error estimate is independent of the wavenumber, and thus the number of degrees of freedom required to achieve a prescribed level of accuracy does not increase as the wavenumber tends to infinity.
Resumo:
In this paper we show stability and convergence for a novel Galerkin boundary element method approach to the impedance boundary value problem for the Helmholtz equation in a half-plane with piecewise constant boundary data. This problem models, for example, outdoor sound propagation over inhomogeneous flat terrain. To achieve a good approximation with a relatively low number of degrees of freedom we employ a graded mesh with smaller elements adjacent to discontinuities in impedance, and a special set of basis functions for the Galerkin method so that, on each element, the approximation space consists of polynomials (of degree $\nu$) multiplied by traces of plane waves on the boundary. In the case where the impedance is constant outside an interval $[a,b]$, which only requires the discretization of $[a,b]$, we show theoretically and experimentally that the $L_2$ error in computing the acoustic field on $[a,b]$ is ${\cal O}(\log^{\nu+3/2}|k(b-a)| M^{-(\nu+1)})$, where $M$ is the number of degrees of freedom and $k$ is the wavenumber. This indicates that the proposed method is especially commendable for large intervals or a high wavenumber. In a final section we sketch how the same methodology extends to more general scattering problems.
Resumo:
Land plants have had the reputation of being problematic for DNA barcoding for two general reasons: (i) the standard DNA regions used in algae, animals and fungi have exceedingly low levels of variability and (ii) the typically used land plant plastid phylogenetic markers (e.g. rbcL, trnL-F, etc.) appear to have too little variation. However, no one has assessed how well current phylogenetic resources might work in the context of identification (versus phylogeny reconstruction). In this paper, we make such an assessment, particularly with two of the markers commonly sequenced in land plant phylogenetic studies, plastid rbcL and internal transcribed spacers of the large subunits of nuclear ribosomal DNA (ITS), and find that both of these DNA regions perform well even though the data currently available in GenBank/EBI were not produced to be used as barcodes and BLAST searches are not an ideal tool for this purpose. These results bode well for the use of even more variable regions of plastid DNA (such as, for example, psbA-trnH) as barcodes, once they have been widely sequenced. In the short term, efforts to bring land plant barcoding up to the standards being used now in other organisms should make swift progress. There are two categories of DNA barcode users, scientists in fields other than taxonomy and taxonomists. For the former, the use of mitochondrial and plastid DNA, the two most easily assessed genomes, is at least in the short term a useful tool that permits them to get on with their studies, which depend on knowing roughly which species or species groups they are dealing with, but these same DNA regions have important drawbacks for use in taxonomic studies (i.e. studies designed to elucidate species limits). For these purposes, DNA markers from uniparentally (usually maternally) inherited genomes can only provide half of the story required to improve taxonomic standards being used in DNA barcoding. In the long term, we will need to develop more sophisticated barcoding tools, which would be multiple, low-copy nuclear markers with sufficient genetic variability and PCR-reliability; these would permit the detection of hybrids and permit researchers to identify the 'genetic gaps' that are useful in assessing species limits.
Resumo:
The implications of whether new surfaces in cutting are formed just by plastic flow past the tool or by some fracturelike separation process involving significant surface work, are discussed. Oblique metalcutting is investigated using the ideas contained in a new algebraic model for the orthogonal machining of metals (Atkins, A. G., 2003, "Modeling Metalcutting Using Modern Ductile Fracture Mechanics: Quantitative Explanations for Some Longstanding Problems," Int. J. Mech. Sci., 45, pp. 373–396) in which significant surface work (ductile fracture toughnesses) is incorporated. The model is able to predict explicit material-dependent primary shear plane angles and provides explanations for a variety of well-known effects in cutting, such as the reduction of at small uncut chip thicknesses; the quasilinear plots of cutting force versus depth of cut; the existence of a positive force intercept in such plots; why, in the size-effect regime of machining, anomalously high values of yield stress are determined; and why finite element method simulations of cutting have to employ a "separation criterion" at the tool tip. Predictions from the new analysis for oblique cutting (including an investigation of Stabler's rule for the relation between the chip flow velocity angle C and the angle of blade inclination i) compare consistently and favorably with experimental results.
Resumo:
We study boundary value problems for a linear evolution equation with spatial derivatives of arbitrary order, on the domain 0 < x < L, 0 < t < T, with L and T positive nite constants. We present a general method for identifying well-posed problems, as well as for constructing an explicit representation of the solution of such problems. This representation has explicit x and t dependence, and it consists of an integral in the k-complex plane and of a discrete sum. As illustrative examples we solve some two-point boundary value problems for the equations iqt + qxx = 0 and qt + qxxx = 0.
Resumo:
This paper addresses the statistical mechanics of ideal polymer chains next to a hard wall. The principal quantity of interest, from which all monomer densities can be calculated, is the partition function, G N(z) , for a chain of N discrete monomers with one end fixed a distance z from the wall. It is well accepted that in the limit of infinite N , G N(z) satisfies the diffusion equation with the Dirichlet boundary condition, G N(0) = 0 , unless the wall possesses a sufficient attraction, in which case the Robin boundary condition, G N(0) = - x G N ′(0) , applies with a positive coefficient, x . Here we investigate the leading N -1/2 correction, D G N(z) . Prior to the adsorption threshold, D G N(z) is found to involve two distinct parts: a Gaussian correction (for z <~Unknown control sequence '\lesssim' aN 1/2 with a model-dependent amplitude, A , and a proximal-layer correction (for z <~Unknown control sequence '\lesssim' a described by a model-dependent function, B(z).
Resumo:
A simple parameter adaptive controller design methodology is introduced in which steady-state servo tracking properties provide the major control objective. This is achieved without cancellation of process zeros and hence the underlying design can be applied to non-minimum phase systems. As with other self-tuning algorithms, the design (user specified) polynomials of the proposed algorithm define the performance capabilities of the resulting controller. However, with the appropriate definition of these polynomials, the synthesis technique can be shown to admit different adaptive control strategies, e.g. self-tuning PID and self-tuning pole-placement controllers. The algorithm can therefore be thought of as an embodiment of other self-tuning design techniques. The performances of some of the resulting controllers are illustrated using simulation examples and the on-line application to an experimental apparatus.