Plane wave discontinuous Galerkin methods: exponential convergence of the hp-version


Autoria(s): Hiptmair, R.; Moiola, A.; Perugia, I.
Data(s)

06/05/2015

Resumo

We consider the two-dimensional Helmholtz equation with constant coefficients on a domain with piecewise analytic boundary, modelling the scattering of acoustic waves at a sound-soft obstacle. Our discretisation relies on the Trefftz-discontinuous Galerkin approach with plane wave basis functions on meshes with very general element shapes, geometrically graded towards domain corners. We prove exponential convergence of the discrete solution in terms of number of unknowns.

Formato

text

Identificador

http://centaur.reading.ac.uk/40203/1/HiptmairMoiolaPerugia_FoCM_accepted.pdf

Hiptmair, R., Moiola, A. <http://centaur.reading.ac.uk/view/creators/90005242.html> and Perugia, I. (2015) Plane wave discontinuous Galerkin methods: exponential convergence of the hp-version. Foundations of Computational Mathematics. ISSN 1615-3375 doi: 10.1007/s10208-015-9260-1 <http://dx.doi.org/10.1007/s10208-015-9260-1>

Idioma(s)

en

Publicador

Springer US

Relação

http://centaur.reading.ac.uk/40203/

creatorInternal Moiola, A.

http://link.springer.com/article/10.1007/s10208-015-9260-1

10.1007/s10208-015-9260-1

Tipo

Article

PeerReviewed