168 resultados para Equilibrium Problem
Resumo:
An important feature of agribusiness promotion programs is their lagged impact on consumption. Efficient investment in advertising requires reliable estimates of these lagged responses and it is desirable from both applied and theoretical standpoints to have a flexible method for estimating them. This note derives an alternative Bayesian methodology for estimating lagged responses when investments occur intermittently within a time series. The method exploits a latent-variable extension of the natural-conjugate, normal-linear model, Gibbs sampling and data augmentation. It is applied to a monthly time series on Turkish pasta consumption (1993:5-1998:3) and three, nonconsecutive promotion campaigns (1996:3, 1997:3, 1997:10). The results suggest that responses were greatest to the second campaign, which allocated its entire budget to television media; that its impact peaked in the sixth month following expenditure; and that the rate of return (measured in metric tons additional consumption per thousand dollars expended) was around a factor of 20.
Resumo:
Where there is genetically based variation in selfishness and altruism, as in man, altruists with an innate ability to recognise and thereby only help their altruistic relatives may evolve. Here we use diploid population genetic models to chart the evolution of genetically-based discrimination in populations initially in stable equilibrium between altruism and selfishness. The initial stable equilibria occur because help is assumed subject to diminishing returns. Similar results were obtained whether we used a model with two independently inherited loci, one controlling altruism the other discrimination, or a one locus model with three alleles. The latter is the opposite extreme to the first model, and can be thought of as involving complete linkage between two loci on the same chromosome. The introduction of discrimination reduced the benefits obtained by selfish individuals, more so as the number of discriminators increased, and selfishness was eventually eliminated in some cases. In others selfishness persisted and the evolutionary outcome was a stable equilibrium involving selfish individuals and both discriminating and non-discriminating altruists. Heritable variation in selfishness, altruism and discrimination is predicted to be particularly evident among full sibs. The suggested coexistence of these three genetic dispositions could explain widespread interest within human social groups as to who will and who will not help others. These predictions merit experimental and observational investigation by primatologists, anthropologists and psychologists. Keywords: Population genetics, Diploid, Heritability, Prosocial, Behaviour genetics
Resumo:
Convective equilibrium is a long-standing and useful concept for understanding many aspects of the behaviour of deep moist convection. For example, it is often invoked in developing parameterizations for large-scale models. However, the equilibrium assumption may begin to break down as models are increasingly used with shorter timesteps and finer resolutions. Here we perform idealized cloud-system resolving model simulations of deep convection with imposed time variations in the surface forcing. A range of rapid forcing timescales from 1 − 36hr are used, in order to induce systematic departures from equilibrium. For the longer forcing timescales, the equilibrium assumption remains valid, in at least the limited sense that cycle-integrated measures of convective activity are very similar from cycle to cycle. For shorter forcing timescales, cycle-integrated convection becomes more variable, with enhanced activity on one cycle being correlated with reduced activity on the next, suggesting a role for convective memory. Further investigation shows that the memory does not appear to be carried by the domain-mean thermodynamic fields but rather by structures on horizontal scales of 5 − 20km. Such structures are produced by the convective clouds and can persist beyond the lifetime of the cloud, even through to the next forcing cycle.
Resumo:
Equilibrium theory occupies an important position in chemistry and it is traditionally based on thermodynamics. A novel mathematical approach to chemical equilibrium theory for gaseous systems at constant temperature and pressure is developed. Six theorems are presented logically which illustrate the power of mathematics to explain chemical observations and these are combined logically to create a coherent system. This mathematical treatment provides more insight into chemical equilibrium and creates more tools that can be used to investigate complex situations. Although some of the issues covered have previously been given in the literature, new mathematical representations are provided. Compared to traditional treatments, the new approach relies on straightforward mathematics and less on thermodynamics, thus, giving a new and complementary perspective on equilibrium theory. It provides a new theoretical basis for a thorough and deep presentation of traditional chemical equilibrium. This work demonstrates that new research in a traditional field such as equilibrium theory, generally thought to have been completed many years ago, can still offer new insights and that more efficient ways to present the contents can be established. The work presented here can be considered appropriate as part of a mathematical chemistry course at University level.
Resumo:
Straightforward mathematical techniques are used innovatively to form a coherent theoretical system to deal with chemical equilibrium problems. For a systematic theory it is necessary to establish a system to connect different concepts. This paper shows the usefulness and consistence of the system by applications of the theorems introduced previously. Some theorems are shown somewhat unexpectedly to be mathematically correlated and relationships are obtained in a coherent manner. It has been shown that theorem 1 plays an important part in interconnecting most of the theorems. The usefulness of theorem 2 is illustrated by proving it to be consistent with theorem 3. A set of uniform mathematical expressions are associated with theorem 3. A variety of mathematical techniques based on theorems 1–3 are shown to establish the direction of equilibrium shift. The equilibrium properties expressed in initial and equilibrium conditions are shown to be connected via theorem 5. Theorem 6 is connected with theorem 4 through the mathematical representation of theorem 1.
Resumo:
The case is made for a more careful analysis of the large time asymptotic of infinite particle systems in the thermodynamic limit beyond zero density. The insufficiency of current analysis even in the model case of free particles is demonstrated. Recent advances based on more sophisticated analytical tools like functions of mean variation and Hardy spaces are sketched.
Resumo:
We consider the numerical treatment of second kind integral equations on the real line of the form ∅(s) = ∫_(-∞)^(+∞)▒〖κ(s-t)z(t)ϕ(t)dt,s=R〗 (abbreviated ϕ= ψ+K_z ϕ) in which K ϵ L_1 (R), z ϵ L_∞ (R) and ψ ϵ BC(R), the space of bounded continuous functions on R, are assumed known and ϕ ϵ BC(R) is to be determined. We first derive sharp error estimates for the finite section approximation (reducing the range of integration to [-A, A]) via bounds on (1-K_z )^(-1)as an operator on spaces of weighted continuous functions. Numerical solution by a simple discrete collocation method on a uniform grid on R is then analysed: in the case when z is compactly supported this leads to a coefficient matrix which allows a rapid matrix-vector multiply via the FFT. To utilise this possibility we propose a modified two-grid iteration, a feature of which is that the coarse grid matrix is approximated by a banded matrix, and analyse convergence and computational cost. In cases where z is not compactly supported a combined finite section and two-grid algorithm can be applied and we extend the analysis to this case. As an application we consider acoustic scattering in the half-plane with a Robin or impedance boundary condition which we formulate as a boundary integral equation of the class studied. Our final result is that if z (related to the boundary impedance in the application) takes values in an appropriate compact subset Q of the complex plane, then the difference between ϕ(s)and its finite section approximation computed numerically using the iterative scheme proposed is ≤C_1 [kh log〖(1⁄kh)+(1-Θ)^((-1)⁄2) (kA)^((-1)⁄2) 〗 ] in the interval [-ΘA,ΘA](Θ<1) for kh sufficiently small, where k is the wavenumber and h the grid spacing. Moreover this numerical approximation can be computed in ≤C_2 N logN operations, where N = 2A/h is the number of degrees of freedom. The values of the constants C1 and C2 depend only on the set Q and not on the wavenumber k or the support of z.
Resumo:
We prove unique existence of solution for the impedance (or third) boundary value problem for the Helmholtz equation in a half-plane with arbitrary L∞ boundary data. This problem is of interest as a model of outdoor sound propagation over inhomogeneous flat terrain and as a model of rough surface scattering. To formulate the problem and prove uniqueness of solution we introduce a novel radiation condition, a generalization of that used in plane wave scattering by one-dimensional diffraction gratings. To prove existence of solution and a limiting absorption principle we first reformulate the problem as an equivalent second kind boundary integral equation to which we apply a form of Fredholm alternative, utilizing recent results on the solvability of integral equations on the real line in [5].
Resumo:
We consider the Dirichlet boundary value problem for the Helmholtz equation in a non-locally perturbed half-plane, this problem arising in electromagnetic scattering by one-dimensional rough, perfectly conducting surfaces. We propose a new boundary integral equation formulation for this problem, utilizing the Green's function for an impedance half-plane in place of the standard fundamental solution. We show, at least for surfaces not differing too much from the flat boundary, that the integral equation is uniquely solvable in the space of bounded and continuous functions, and hence that, for a variety of incident fields including an incident plane wave, the boundary value problem for the scattered field has a unique solution satisfying the limiting absorption principle. Finally, a result of continuous dependence of the solution on the boundary shape is obtained.
Resumo:
The problem of symmetric stability is examined within the context of the direct Liapunov method. The sufficient conditions for stability derived by Fjørtoft are shown to imply finite-amplitude, normed stability. This finite-amplitude stability theorem is then used to obtain rigorous upper bounds on the saturation amplitude of disturbances to symmetrically unstable flows.By employing a virial functional, the necessary conditions for instability implied by the stability theorem are shown to be in fact sufficient for instability. The results of Ooyama are improved upon insofar as a tight two-sided (upper and lower) estimate is obtained of the growth rate of (modal or nonmodal) symmetric instabilities.The case of moist adiabatic systems is also considered.
Resumo:
This Forum challenges and problematizes the term incomplete acquisition, which has been widely used to describe the state of competence of heritage speaker (HS) bilinguals for well over a decade (see, e.g., Montrul, 2008). It is suggested and defended that HS competence, while often different from monolingual peers, is in fact not incomplete (given any reasonable definition by the word incomplete), but simply distinct for reasons related to the realities of their environment.
Resumo:
We study the homogeneous Riemann-Hilbert problem with a vanishing scalar-valued continuous coefficient. We characterize non-existence of nontrivial solutions in the case where the coefficient has its values along several rays starting from the origin. As a consequence, some results on injectivity and existence of eigenvalues of Toeplitz operators in Hardy spaces are obtained.