20 resultados para SRC-2


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective - Platelet stimulation by collagen and collagen-related peptides (CRPs) is associated with activation of protein tyrosine kinases. In the present study, we investigated the role of Src family tyrosine kinases in the initial adhesion events of human platelets to collagen and cross-linked CRP. Methods and Results - Under arterial flow conditions, a glycoprotein VI - specific substrate, cross-linked CRP, caused rapid (<2 second) platelet retention and protein tyrosine phosphorylation that were markedly decreased by the Src family kinase inhibitor pyrozolopyrimidine (PP2) or by aggregation inhibitor GRGDSP. CRP-induced platelet retention was transient, and 90% of single platelets or aggregates detached within seconds. PP2, although having no effect on RGD peptide-binding to CRP, completely blocked aggregation and tyrosine phosphorylation of Syk and phospholipase Cγ2 (PLCγ2). In contrast, PP2 weakly (<30%) suppressed firm adhesion to collagen mediated primarily by the alpha(2)beta(1) integrin. Although PP2 prevented activation of Syk and PLCgamma2 in collagen-adherent platelets, tyrosine phosphorylation of several unidentified protein bands persisted, as did autophosphorylation of pp125(FAK). Conclusions - These findings indicate that activation of Src-tyrosine kinases Syk and PLCgamma2 is not required for the initial stable attachment of human platelets to collagen and for FAK autophosphorylation. However, Src-tyrosine kinases are critical for glycoprotein VI - mediated signaling leading to platelet aggregation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The interaction of C-type lectin receptor 2 (CLEC-2) on platelets with Podoplanin on lymphatic endothelial cells initiates platelet signaling events that are necessary for prevention of blood-lymph mixing during development. In the present study, we show that CLEC-2 signaling via Src family and Syk tyrosine kinases promotes platelet adhesion to primary mouse lymphatic endothelial cells at low shear. Using supported lipid bilayers containing mobile Podoplanin, we further show that activation of Src and Syk in platelets promotes clustering of CLEC-2 and Podoplanin. Clusters of CLEC-2-bound Podoplanin migrate rapidly to the center of the platelet to form a single structure. Fluorescence lifetime imaging demonstrates that molecules within these clusters are within 10 nm of one another and that the clusters are disrupted by inhibition of Src and Syk family kinases. CLEC-2 clusters are also seen in platelets adhered to immobilized Podoplanin using direct stochastic optical reconstruction microscopy. These findings provide mechanistic insight by which CLEC-2 signaling promotes adhesion to Podoplanin and regulation of Podoplanin signaling, thereby contributing to lymphatic vasculature development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Platelet-specific deletion of CLEC-2, which signals through Src and Syk kinases, or global deletion of its ligand podoplanin results in blood-filled lymphatics during mouse development. Platelet-specific Syk deficiency phenocopies this defect, indicating that platelet activation is required for lymphatic development. In the present study, we investigated whether CLEC-2-podoplanin interactions could support platelet arrest from blood flow and whether platelet signalling is required for stable platelet adhesion to lymphatic endothelial cells (LECs) and recombinant podoplanin under flow. Perfusion of human or mouse blood over human LEC monolayers led to platelet adhesion and aggregation. Following αIIbβ3 blockade, individual platelets still adhered. Platelet binding occurred at venous but not arterial shear rates. There was no adhesion using CLEC-2-deficient blood or to vascular endothelial cells (which lack podoplanin). Perfusion of human blood over human Fc-podoplanin (hFcPDPN) in the presence of monoclonal antibody IV.3 to block FcγRIIA receptors led to platelet arrest at similar shear rates to those used on LECs. Src and Syk inhibitors significantly reduced global adhesion of human or mouse platelets to LECs and hFcPDPN. A similar result was seen using Syk-deficient mouse platelets. Reduced platelet adhesion was due to a decrease in the stability of binding. In conclusion, our data reveal that CLEC-2 is an adhesive receptor that supports platelet arrest to podoplanin under venous shear. Src/Syk-dependent signalling stabilises platelet adhesion to podoplanin, providing a possible molecular mechanism contributing to the lymphatic defects of Syk-deficient mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Platelet activation by collagen depends on signals transduced by the glycoprotein (GP)VI–Fc receptor (FcR)-chain collagen receptor complex, which involves recruitment of phosphatidylinositol 3-kinase (PI3K) to phosphorylated tyrosines in the linker for activation of T cells (LAT). An interaction between the p85 regulatory subunit of PI3K and the scaffolding molecule Grb-2-associated binding protein-1 (Gab1), which is regulated by binding of the Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) to Gab1, has been shown in other cell types to sustain PI3K activity to elicit cellular responses. Platelet endothelial cell adhesion molecule-1 (PECAM-1) functions as a negative regulator of platelet reactivity and thrombosis, at least in part by inhibiting GPVI–FcR-chain signaling via recruitment of SHP-2 to phosphorylated immunoreceptor tyrosine-based inhibitory motifs in PECAM-1. Objective: To investigate the possibility that PECAM-1 regulates the formation of the Gab1–p85 signaling complexes, and the potential effect of such interactions on GPVI-mediated platelet activation in platelets. Methods: The ability of PECAM-1 signaling to modulate the LAT signalosome was investigated with immunoblotting assays on human platelets and knockout mouse platelets. Results: PECAM-1-associated SHP-2 in collagen-stimulated platelets binds to p85, which results in diminished levels of association with both Gab1 and LAT and reduced collagen-stimulated PI3K signaling. We therefore propose that PECAM-1-mediated inhibition of GPVI-dependent platelet responses result, at least in part, from recruitment of SHP-2–p85 complexes to tyrosine-phosphorylated PECAM-1, which diminishes the association of PI3K with activatory signaling molecules, such as Gab1 and LAT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanisms that arrest G-protein-coupled receptor (GPCR) signaling prevent uncontrolled stimulation that could cause disease. Although uncoupling from heterotrimeric G-proteins, which transiently arrests signaling, is well described, little is known about the mechanisms that permanently arrest signaling. Here we reported on the mechanisms that terminate signaling by protease-activated receptor 2 (PAR(2)), which mediated the proinflammatory and nociceptive actions of proteases. Given its irreversible mechanism of proteolytic activation, PAR(2) is a model to study the permanent arrest of GPCR signaling. By immunoprecipitation and immunoblotting, we observed that activated PAR(2) was mono-ubiquitinated. Immunofluorescence indicated that activated PAR(2) translocated from the plasma membrane to early endosomes and lysosomes where it was degraded, as determined by immunoblotting. Mutant PAR(2) lacking intracellular lysine residues (PAR(2)Delta14K/R) was expressed at the plasma membrane and signaled normally but was not ubiquitinated. Activated PAR(2) Delta14K/R internalized but was retained in early endosomes and avoided lysosomal degradation. Activation of wild type PAR(2) stimulated tyrosine phosphorylation of the ubiquitin-protein isopeptide ligase c-Cbl and promoted its interaction with PAR(2) at the plasma membrane and in endosomes in an Src-dependent manner. Dominant negative c-Cbl lacking the ring finger domain inhibited PAR(2) ubiquitination and induced retention in early endosomes, thereby impeding lysosomal degradation. Although wild type PAR(2) was degraded, and recovery of agonist responses required synthesis of new receptors, lysine mutation and dominant negative c-Cbl impeded receptor ubiquitination and degradation and allowed PAR(2) to recycle and continue to signal. Thus, c-Cbl mediated ubiquitination and lysosomal degradation of PAR(2) to irrevocably terminate signaling by this and perhaps other GPCRs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

G protein-coupled receptors of nociceptive neurons can sensitize transient receptor potential (TRP) ion channels, which amplify neurogenic inflammation and pain. Protease-activated receptor 2 (PAR(2)), a receptor for inflammatory proteases, is a major mediator of neurogenic inflammation and pain. We investigated the signaling mechanisms by which PAR(2) regulates TRPV4 and determined the importance of tyrosine phosphorylation in this process. Human TRPV4 was expressed in HEK293 cells under control of a tetracycline-inducible promoter, allowing controlled and graded channel expression. In cells lacking TRPV4, the PAR(2) agonist stimulated a transient increase in [Ca(2+)](i). TRPV4 expression led to a markedly sustained increase in [Ca(2+)](i). Removal of extracellular Ca(2+) and treatment with the TRPV4 antagonists Ruthenium Red or HC067047 prevented the sustained response. Inhibitors of phospholipase A(2) and cytochrome P450 epoxygenase attenuated the sustained response, suggesting that PAR(2) generates arachidonic acid-derived lipid mediators, such as 5',6'-EET, that activate TRPV4. Src inhibitor 1 suppressed PAR(2)-induced activation of TRPV4, indicating the importance of tyrosine phosphorylation. The TRPV4 tyrosine mutants Y110F, Y805F, and Y110F/Y805F were expressed normally at the cell surface. However, PAR(2) was unable to activate TRPV4 with the Y110F mutation. TRPV4 antagonism suppressed PAR(2) signaling to primary nociceptive neurons, and TRPV4 deletion attenuated PAR(2)-stimulated neurogenic inflammation. Thus, PAR(2) activation generates a signal that induces sustained activation of TRPV4, which requires a key tyrosine residue (TRPV4-Tyr-110). This mechanism partly mediates the proinflammatory actions of PAR(2).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flavonoids reduce cardiovascular disease risk through anti-inflammatory, anti-coagulant and anti-platelet actions. One key flavonoid inhibitory mechanism is blocking kinase activity that drives these processes. Flavonoids attenuate activities of kinases including phosphoinositide-3-kinase (PI3K), Fyn, Lyn, Src, Syk, PKC, PIM1/2, ERK, JNK, and PKA. X-ray crystallographic analyses of kinase-flavonoid complexes show that flavonoid ring systems and their hydroxyl substitutions are important structural features for their binding to kinases. A clearer understanding of structural interactions of flavonoids with kinases is necessary to allow construction of more potent and selective counterparts. We examined flavonoid (quercetin, apigenin and catechin) interactions with Src-family kinases (Lyn, Fyn and Hck) applying the Sybyl docking algorithm and GRID. A homology model (Lyn) was used in our analyses to demonstrate that high quality predicted kinase structures are suitable for flavonoid computational studies. Our docking results revealed potential hydrogen bond contacts between flavonoid hydroxyls and kinase catalytic site residues. Identification of plausible contacts indicated that quercetin formed the most energetically stable interactions, apigenin lacked hydroxyl groups necessary for important contacts, and the non-planar structure of catechin could not support predicted hydrogen bonding patterns. GRID analysis using a hydroxyl functional group supported docking results. Based on these findings, we predicted that quercetin would inhibit activities of Src-family kinases with greater potency than apigenin and catechin. We validated this prediction using in vitro kinase assays. We conclude that our study can be used as a basis to construct virtual flavonoid interaction libraries to guide drug discovery using these compounds as molecular templates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fucoidan, a sulfated polysaccharide from Fucus vesiculosus, decreases bleeding time and clotting time in hemophilia, possibly through inhibition of tissue factor pathway inhibitor. However, its effect on platelets and the receptor by which fucoidan induces cellular processes has not been elucidated. In this study, we demonstrate that fucoidan induces platelet activation in a concentration-dependent manner. Fucoidan-induced platelet activation was completely abolished by the pan-Src family kinase (SFK) inhibitor, PP2, or when Syk is inhibited. PP2 abolished phosphorylations of Syk and Phospholipase C-γ2. Fucoidan-induced platelet activation had a lag phase, which is reminiscent of platelet activation by collagen and CLEC-2 receptor agonists. Platelet activation by fucoidan was only slightly inhibited in FcRγ-chain null mice, indicating that fucoidan was not acting primarily through GPVI receptor. On the other hand, fucoidan-induced platelet activation was inhibited in platelet-specific CLEC-2 knock-out murine platelets revealing CLEC-2 as a physiological target of fucoidan. Thus, our data show fucoidan as a novel CLEC-2 receptor agonist that activates platelets through a SFK-dependent signaling pathway. Furthermore, the efficacy of fucoidan in hemophilia raises the possibility that decreased bleeding times could be achieved through activation of platelets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In humans and other mammals, Tityus discrepans (Td) scorpion envenomation produces a variety of systemic effects including respiratory distress, a generalized inflammatory reaction, modulation of blood pressure, fibrin formation, and platelet activation. For many of these effects, the venom components and underlying mechanisms are not known. In the present study, we demonstrate that Td venom (TdV) stimulates integrin αIIbβ3-dependent aggregation of washed human and mouse platelets downstream of Src kinase activation. The pattern of increase in tyrosine phosphorylation induced by TdV in human platelets is similar to that induced by the collagen receptor GPVI, and includes FcR γ-chain, Syk, and PLC γ 2. Confirmation of GPVI activation by TdV was achieved by expression of human GPVI in chicken DT40 B cells and use of a reporter assay. To our surprise, TdV was able to activate mouse platelets deficient in the GPVI-FcR γ-chain complex through a pathway that was also dependent on Src kinases. TdV therefore activates platelets through GPVI and a second, as yet unidentified Src kinase-dependent pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The C-type lectin receptor CLEC-2 is expressed primarily on the surface of platelets, where it is present as a dimer, and is found at low level on a subpopulation of other hematopoietic cells, including mouse neutrophils [1–4] Clustering of CLEC-2 by the snake venom toxin rhodocytin, specific antibodies or its endogenous ligand, podoplanin, elicits powerful activation of platelets through a pathway that is similar to that used by the collagen receptor glycoprotein VI (GPVI) [4–6]. The cytosolic tail of CLEC-2 contains a conserved YxxL sequence preceded by three upstream acidic amino acid residues, which together form a novel motif known as a hemITAM. Ligand engagement induces tyrosine phosphorylation of the hemITAM sequence providing docking sites for the tandem-SH2 domains of the tyrosine kinase Syk across a CLEC-2 receptor dimer [3]. Tyrosine phosphorylation of Syk by Src family kinases and through autophosphorylation leads to stimulation of a downstream signaling cascade that culminates in activation of phospholipase C γ2 (PLCγ2) [4,6]. Recently, CLEC-2 has been proposed to play a major role in supporting activation of platelets at arteriolar rates of flow [1]. Injection of a CLEC-2 antibody into mice causes a sustained depletion of the C-type lectin receptor from the platelet surface [1]. The CLEC-2-depleted platelets were unresponsive to rhodocytin but underwent normal aggregation and secretion responses after stimulation of other platelet receptors, including GPVI [1]. In contrast, there was a marked decrease in aggregate formation relative to controls when CLEC-2-depleted blood was flowed at arteriolar rates of shear over collagen (1000 s−1 and 1700 s−1) [1]. Furthermore, antibody treatment significantly increased tail bleeding times and mice were unable to occlude their vessels after ferric chloride injury [1]. These data provide evidence for a critical role for CLEC-2 in supporting platelet aggregation at arteriolar rates of flow. The underlying mechanism is unclear as platelets do not express podoplanin, the only known endogenous ligand of CLEC-2. In the present study, we have investigated the role of CLEC-2 in platelet aggregation and thrombus formation using platelets from a novel mutant mouse model that lacks functional CLEC-2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The C-type lectin receptor CLEC-2 activates platelets through Src and Syk tyrosine kinases, leading to tyrosine phosphorylation of downstream adapter proteins and effector enzymes, including phospholipase-C gamma2. Signaling is initiated through phosphorylation of a single conserved tyrosine located in a YxxL sequence in the CLEC-2 cytosolic tail. The signaling pathway used by CLEC-2 shares many similarities with that used by receptors that have 1 or more copies of an immunoreceptor tyrosine-based activation motif, defined by the sequence Yxx(L/I)x(6-12)Yxx(L/I), in their cytosolic tails or associated receptor chains. Phosphorylation of the conserved immunoreceptor tyrosine-based activation motif tyrosines promotes Syk binding and activation through binding of the Syk tandem SH2 domains. In this report, we present evidence using peptide pull-down studies, surface plasmon resonance, quantitative Western blotting, tryptophan fluorescence measurements, and competition experiments that Syk activation by CLEC-2 is mediated by the cross-linking through the tandem SH2 domains with a stoichiometry of 2:1. In support of this model, cross-linking and electron microscopy demonstrate that CLEC-2 is present as a dimer in resting platelets and converted to larger complexes on activation. This is a unique mode of activation of Syk by a single YxxL-containing receptor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inhibitory effect of R406 provides direct evidence of a role for Syk in GPVI, CLEC-2 and integrin alphaIIbbeta3 signaling in human platelets. Further, the results demonstrate a critical role for Syk in mediating tyrosine phosphorylation of CLEC-2, suggesting a novel model in which both Src and Syk kinases regulate tyrosine phosphorylation of the C-type lectin receptor leading to platelet activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that Syk is critical for lamellipodia formation on a range of immobilized proteins but that this can be overcome by addition of thrombin. Further, we reveal a novel role for GPVI in supporting thrombin-induced activation, independent of Syk and Src kinases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integrin alpha(IIb)beta(3) plays a critical role in mediating clot retraction by platelets which is important in vivo in consolidating thrombus formation. Actin-myosin interaction is essential for clot retraction. In the present study, we demonstrate that the structurally distinct Src kinase inhibitors, PP2 and PD173952, significantly reduced the rate of clot retraction, but did not prevent it reaching completion. This effect was accompanied by abolition of alpha(IIb)beta(3)-dependent protein tyrosine phosphorylation, including PLCgamma2. A role for PLCgamma2 in mediating clot retraction was demonstrated using PLCgamma2-deficient murine platelets. Furthermore, platelet adhesion to fibrinogen leads to MLC phosphorylation through a pathway that is inhibited by PP2 and by the PLC inhibitor, U73122. These results demonstrate a partial role for Src kinase-dependent activation of PLCgamma2 and MLC phosphorylation in mediating clot retraction downstream of integrin alpha(IIb)beta(3).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The glycoprotein VI (GPVI)-FcR gamma-chain complex initiates powerful activation of platelets by the subendothelial matrix proteins collagen and laminin, which are exposed following vessel damage. Initiation of platelet activation is through an immunoreceptor tyrosine-based activation motif (ITAM). C-type lectin receptor 2 (CLEC-2), following engagement by its endogenous ligand, podoplanin, also mediates powerful platelet activation through Src and Syk kinases, but regulates Syk through a novel dimerization mechanism via a single YxxL motif known as a hemITAM. This chapter compares the signaling pathways of both receptors and their role in hemostasis and thrombosis. Platelets are also increasingly implicated in processes beyond hemostasis and thrombosis. One such process is the efficient separation of the lymphatic and blood vasculatures, which is dependent on CLEC-2-mediated platelet activation.