6 resultados para Simulations Monte Carlo de la chimie de trajectoires
em Universitat de Girona, Spain
Resumo:
In networks with small buffers, such as optical packet switching based networks, the convolution approach is presented as one of the most accurate method used for the connection admission control. Admission control and resource management have been addressed in other works oriented to bursty traffic and ATM. This paper focuses on heterogeneous traffic in OPS based networks. Using heterogeneous traffic and bufferless networks the enhanced convolution approach is a good solution. However, both methods (CA and ECA) present a high computational cost for high number of connections. Two new mechanisms (UMCA and ISCA) based on Monte Carlo method are proposed to overcome this drawback. Simulation results show that our proposals achieve lower computational cost compared to enhanced convolution approach with an small stochastic error in the probability estimation
Resumo:
Realistic rendering animation is known to be an expensive processing task when physically-based global illumination methods are used in order to improve illumination details. This paper presents an acceleration technique to compute animations in radiosity environments. The technique is based on an interpolated approach that exploits temporal coherence in radiosity. A fast global Monte Carlo pre-processing step is introduced to the whole computation of the animated sequence to select important frames. These are fully computed and used as a base for the interpolation of all the sequence. The approach is completely view-independent. Once the illumination is computed, it can be visualized by any animated camera. Results present significant high speed-ups showing that the technique could be an interesting alternative to deterministic methods for computing non-interactive radiosity animations for moderately complex scenarios
Resumo:
Diffusion tensor magnetic resonance imaging, which measures directional information of water diffusion in the brain, has emerged as a powerful tool for human brain studies. In this paper, we introduce a new Monte Carlo-based fiber tracking approach to estimate brain connectivity. One of the main characteristics of this approach is that all parameters of the algorithm are automatically determined at each point using the entropy of the eigenvalues of the diffusion tensor. Experimental results show the good performance of the proposed approach
Resumo:
The author studies the error and complexity of the discrete random walk Monte Carlo technique for radiosity, using both the shooting and gathering methods. The author shows that the shooting method exhibits a lower complexity than the gathering one, and under some constraints, it has a linear complexity. This is an improvement over a previous result that pointed to an O(n log n) complexity. The author gives and compares three unbiased estimators for each method, and obtains closed forms and bounds for their variances. The author also bounds the expected value of the mean square error (MSE). Some of the results obtained are also shown
Resumo:
La implementació de la Directiva Europea 91/271/CEE referent a tractament d'aigües residuals urbanes va promoure la construcció de noves instal·lacions al mateix temps que la introducció de noves tecnologies per tractar nutrients en àrees designades com a sensibles. Tant el disseny d'aquestes noves infraestructures com el redisseny de les ja existents es va portar a terme a partir d'aproximacions basades fonamentalment en objectius econòmics degut a la necessitat d'acabar les obres en un període de temps relativament curt. Aquests estudis estaven basats en coneixement heurístic o correlacions numèriques provinents de models determinístics simplificats. Així doncs, moltes de les estacions depuradores d'aigües residuals (EDARs) resultants van estar caracteritzades per una manca de robustesa i flexibilitat, poca controlabilitat, amb freqüents problemes microbiològics de separació de sòlids en el decantador secundari, elevats costos d'operació i eliminació parcial de nutrients allunyant-les de l'òptim de funcionament. Molts d'aquestes problemes van sorgir degut a un disseny inadequat, de manera que la comunitat científica es va adonar de la importància de les etapes inicials de disseny conceptual. Precisament per aquesta raó, els mètodes tradicionals de disseny han d'evolucionar cap a sistemes d'avaluació mes complexos, que tinguin en compte múltiples objectius, assegurant així un millor funcionament de la planta. Tot i la importància del disseny conceptual tenint en compte múltiples objectius, encara hi ha un buit important en la literatura científica tractant aquest camp d'investigació. L'objectiu que persegueix aquesta tesi és el de desenvolupar un mètode de disseny conceptual d'EDARs considerant múltiples objectius, de manera que serveixi d'eina de suport a la presa de decisions al seleccionar la millor alternativa entre diferents opcions de disseny. Aquest treball de recerca contribueix amb un mètode de disseny modular i evolutiu que combina diferent tècniques com: el procés de decisió jeràrquic, anàlisi multicriteri, optimació preliminar multiobjectiu basada en anàlisi de sensibilitat, tècniques d'extracció de coneixement i mineria de dades, anàlisi multivariant i anàlisi d'incertesa a partir de simulacions de Monte Carlo. Això s'ha aconseguit subdividint el mètode de disseny desenvolupat en aquesta tesis en quatre blocs principals: (1) generació jeràrquica i anàlisi multicriteri d'alternatives, (2) anàlisi de decisions crítiques, (3) anàlisi multivariant i (4) anàlisi d'incertesa. El primer dels blocs combina un procés de decisió jeràrquic amb anàlisi multicriteri. El procés de decisió jeràrquic subdivideix el disseny conceptual en una sèrie de qüestions mes fàcilment analitzables i avaluables mentre que l'anàlisi multicriteri permet la consideració de diferent objectius al mateix temps. D'aquesta manera es redueix el nombre d'alternatives a avaluar i fa que el futur disseny i operació de la planta estigui influenciat per aspectes ambientals, econòmics, tècnics i legals. Finalment aquest bloc inclou una anàlisi de sensibilitat dels pesos que proporciona informació de com varien les diferents alternatives al mateix temps que canvia la importància relativa del objectius de disseny. El segon bloc engloba tècniques d'anàlisi de sensibilitat, optimització preliminar multiobjectiu i extracció de coneixement per donar suport al disseny conceptual d'EDAR, seleccionant la millor alternativa un cop s'han identificat decisions crítiques. Les decisions crítiques són aquelles en les que s'ha de seleccionar entre alternatives que compleixen de forma similar els objectius de disseny però amb diferents implicacions pel que respecte a la futura estructura i operació de la planta. Aquest tipus d'anàlisi proporciona una visió més àmplia de l'espai de disseny i permet identificar direccions desitjables (o indesitjables) cap on el procés de disseny pot derivar. El tercer bloc de la tesi proporciona l'anàlisi multivariant de les matrius multicriteri obtingudes durant l'avaluació de les alternatives de disseny. Específicament, les tècniques utilitzades en aquest treball de recerca engloben: 1) anàlisi de conglomerats, 2) anàlisi de components principals/anàlisi factorial i 3) anàlisi discriminant. Com a resultat és possible un millor accés a les dades per realitzar la selecció de les alternatives, proporcionant més informació per a una avaluació mes efectiva, i finalment incrementant el coneixement del procés d'avaluació de les alternatives de disseny generades. En el quart i últim bloc desenvolupat en aquesta tesi, les diferents alternatives de disseny són avaluades amb incertesa. L'objectiu d'aquest bloc és el d'estudiar el canvi en la presa de decisions quan una alternativa és avaluada incloent o no incertesa en els paràmetres dels models que descriuen el seu comportament. La incertesa en el paràmetres del model s'introdueix a partir de funcions de probabilitat. Desprès es porten a terme simulacions Monte Carlo, on d'aquestes distribucions se n'extrauen números aleatoris que es subsisteixen pels paràmetres del model i permeten estudiar com la incertesa es propaga a través del model. Així és possible analitzar la variació en l'acompliment global dels objectius de disseny per a cada una de les alternatives, quines són les contribucions en aquesta variació que hi tenen els aspectes ambientals, legals, econòmics i tècnics, i finalment el canvi en la selecció d'alternatives quan hi ha una variació de la importància relativa dels objectius de disseny. En comparació amb les aproximacions tradicionals de disseny, el mètode desenvolupat en aquesta tesi adreça problemes de disseny/redisseny tenint en compte múltiples objectius i múltiples criteris. Al mateix temps, el procés de presa de decisions mostra de forma objectiva, transparent i sistemàtica el perquè una alternativa és seleccionada en front de les altres, proporcionant l'opció que més bé acompleix els objectius marcats, mostrant els punts forts i febles, les principals correlacions entre objectius i alternatives, i finalment tenint en compte la possible incertesa inherent en els paràmetres del model que es fan servir durant les anàlisis. Les possibilitats del mètode desenvolupat es demostren en aquesta tesi a partir de diferents casos d'estudi: selecció del tipus d'eliminació biològica de nitrogen (cas d'estudi # 1), optimització d'una estratègia de control (cas d'estudi # 2), redisseny d'una planta per aconseguir eliminació simultània de carboni, nitrogen i fòsfor (cas d'estudi # 3) i finalment anàlisi d'estratègies control a nivell de planta (casos d'estudi # 4 i # 5).
Resumo:
The main objective pursued in this thesis targets the development and systematization of a methodology that allows addressing management problems in the dynamic operation of Urban Wastewater Systems. The proposed methodology will suggest operational strategies that can improve the overall performance of the system under certain problematic situations through a model-based approach. The proposed methodology has three main steps: The first step includes the characterization and modeling of the case-study, the definition of scenarios, the evaluation criteria and the operational settings that can be manipulated to improve the system’s performance. In the second step, Monte Carlo simulations are launched to evaluate how the system performs for a wide range of operational settings combinations, and a global sensitivity analysis is conducted to rank the most influential operational settings. Finally, the third step consists on a screening methodology applying a multi-criteria analysis to select the best combinations of operational settings.