4 resultados para Semi-supervised learning

em Universitat de Girona, Spain


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Given a set of images of scenes containing different object categories (e.g. grass, roads) our objective is to discover these objects in each image, and to use this object occurrences to perform a scene classification (e.g. beach scene, mountain scene). We achieve this by using a supervised learning algorithm able to learn with few images to facilitate the user task. We use a probabilistic model to recognise the objects and further we classify the scene based on their object occurrences. Experimental results are shown and evaluated to prove the validity of our proposal. Object recognition performance is compared to the approaches of He et al. (2004) and Marti et al. (2001) using their own datasets. Furthermore an unsupervised method is implemented in order to evaluate the advantages and disadvantages of our supervised classification approach versus an unsupervised one

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reinforcement learning (RL) is a very suitable technique for robot learning, as it can learn in unknown environments and in real-time computation. The main difficulties in adapting classic RL algorithms to robotic systems are the generalization problem and the correct observation of the Markovian state. This paper attempts to solve the generalization problem by proposing the semi-online neural-Q_learning algorithm (SONQL). The algorithm uses the classic Q_learning technique with two modifications. First, a neural network (NN) approximates the Q_function allowing the use of continuous states and actions. Second, a database of the most representative learning samples accelerates and stabilizes the convergence. The term semi-online is referred to the fact that the algorithm uses the current but also past learning samples. However, the algorithm is able to learn in real-time while the robot is interacting with the environment. The paper shows simulated results with the "mountain-car" benchmark and, also, real results with an underwater robot in a target following behavior

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a hybrid behavior-based scheme using reinforcement learning for high-level control of autonomous underwater vehicles (AUVs). Two main features of the presented approach are hybrid behavior coordination and semi on-line neural-Q_learning (SONQL). Hybrid behavior coordination takes advantages of robustness and modularity in the competitive approach as well as efficient trajectories in the cooperative approach. SONQL, a new continuous approach of the Q_learning algorithm with a multilayer neural network is used to learn behavior state/action mapping online. Experimental results show the feasibility of the presented approach for AUVs

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En la E.U. de Magisterio de Donostia de la Universidad del País Vasco (UPV/EHU), este curso 2010/2011 ha comenzado la oferta semi-presencial para aquellos estudiantes que no pueden matricularse a todas las asignaturas de primer curso. Dentro de esta experiencia piloto se ha impartido la asignatura "Desarrollo de la competencia comunicativa I" en el Grado de Educación Primaria, centrada en la competencia comunicativa académica. El diseño de esta asignatura se ha apoyado en investigaciones relacionadas con el desarrollo de esta competencia en entornos virtuales y ha contado con actividades diversas que han permitido a los estudiantes su autoevaluación y también la coevaluación