32 resultados para Robotics Education, Distributed Control, Automonous Robots, Programming, Computer Architecture
em Universitat de Girona, Spain
Resumo:
Microsoft Robotics Studio (MRS) és un entorn per a crear aplicacions per a robots utilitzant una gran varietat de plataformes hardware. Conté un entorn de simulació en el que es pot modelar i simular el moviment del robot. Permet també programar el robot, i executar-lo en l’entorn simulat o bé en el real. MRS resol la comunicació entre els diferents processos asíncrons que solen estar presents en el software de control d’un robot: processos per atendre sensors, actuadors, sistemes de control, comunicacions amb l’exterior,... MRS es pot utilitzar per modelar nous robots utilitzant components que ja estiguin disponibles en les seves llibreries, o també permet crear component nous. Per tal de conèixer en detall aquesta eina, seria interessant utilitzar-la per programa els robots e-pucks, uns robots mòbils autònoms de petites dimensions que disposen de dos motors i un complet conjunt de sensors. El que es vol és simular-los, realitzar un programa de control, realitzar la interfície amb el robot i comprovar el funcionament amb el robot real
Resumo:
This work extends a previously developed research concerning about the use of local model predictive control in differential driven mobile robots. Hence, experimental results are presented as a way to improve the methodology by considering aspects as trajectory accuracy and time performance. In this sense, the cost function and the prediction horizon are important aspects to be considered. The aim of the present work is to test the control method by measuring trajectory tracking accuracy and time performance. Moreover, strategies for the integration with perception system and path planning are briefly introduced. In this sense, monocular image data can be used to plan safety trajectories by using goal attraction potential fields
Resumo:
A pioneer team of students of the University of Girona decided to design and develop an autonomous underwater vehicle (AUV) called ICTINEU-AUV to face the Student Autonomous Underwater Challenge-Europe (SAUC-E). The prototype has evolved from the initial computer aided design (CAD) model to become an operative AUV in the short period of seven months. The open frame and modular design principles together with the compatibility with other robots previously developed at the lab have provided the main design philosophy. Hence, at the robot's core, two networked computers give access to a wide set of sensors and actuators. The Gentoo/Linux distribution was chosen as the onboard operating system. A software architecture based on a set of distributed objects with soft real time capabilities was developed and a hybrid control architecture including mission control, a behavioural layer and a robust map-based localization algorithm made ICTINEU-AUV the winning entry
Resumo:
Autonomous underwater vehicles (AUV) represent a challenging control problem with complex, noisy, dynamics. Nowadays, not only the continuous scientific advances in underwater robotics but the increasing number of subsea missions and its complexity ask for an automatization of submarine processes. This paper proposes a high-level control system for solving the action selection problem of an autonomous robot. The system is characterized by the use of reinforcement learning direct policy search methods (RLDPS) for learning the internal state/action mapping of some behaviors. We demonstrate its feasibility with simulated experiments using the model of our underwater robot URIS in a target following task
Resumo:
Behavior-based navigation of autonomous vehicles requires the recognition of the navigable areas and the potential obstacles. In this paper we describe a model-based objects recognition system which is part of an image interpretation system intended to assist the navigation of autonomous vehicles that operate in industrial environments. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using a rule-based cooperative expert system
Resumo:
El braç robot es va crear com a resposta a una necessitat de fabricació d’elements mitjançant la producció en cadena i en tasques que necessiten precisió. Hi ha, però, altres tipus de tasques les quals no són repetitives, ni poden ésser programades, que necessiten però ser controlades en tot moment per un ésser humà. Són activitats que han d’estar realitzades per un ésser humà, però que requereixen molta precisió, és per això que es creu necessari el disseny d’un prototipus de control d’un braç robot estàndard, que permeti a una persona el control total sobre aquest en temps real per a la realització d’una tasca no repetitiva i no programable prèviament. Pretenem, en el present projecte, dissenyar i construir un braç robot de 5 graus de llibertat, controlat des d’un PC mitjançant un microcontrolador PIC amb comunicació a través d’un bus USB. El robot serà governat des d’un PC a través d’un software de control específic
Resumo:
Aquest projecte s’aplica sobre el robot PRIM (Plataforma Robotitzada d’Informació Multimèdia), un robot autònom no humanoide creat el 2004 per Ateneu Informàtic (AI) que permet realitzar trajectòries 2D gràcies a un sistema de tracció format per dues rodes motrius propulsades independentment. La plataforma PRIM és controlada a partir del control predictiu, aquest control es va implementar en un projecte anterior, creat per l’Alexandre Blasco Gutierrez i titulat “Implementació de tècniques MPC (Model Predictiu Control) sobre la plataforma PRIM I”. El que es pretén en aquest projecte és millorar els resultats obtinguts en el passat projecte reformulant la llei de control i analitzar les discrepàncies obtingudes en les metodologies que s’utilitzen per minimitzar la funció de costos a partir de simulacions de trajectòries
Resumo:
En el laboratori docent de robòtica s'utilitzen robots mòbils autònoms per treballar aspectes relacionats amb el posicionament, el control de trajectòries, la construcció de mapes... Es disposa de cinc robots comercials anomenats “e-puck”, que es caracteritzen per les seves dimensions reduïdes, dos motors i un conjunt complet de sensors. Aquests robots es programen en C++ utilitzant el simulador Webots, que disposa d'un conjunt de llibreries per programar el robot. També es disposa d'un entorn de proves on els robots es poden moure i evitar obstacles. Donat el poc temps que disposen els estudiants que realitzen pràctiques en aquest laboratori, és d'interès desenvolupar un software que contingui ja el posicionament del robot mitjançant odometria i també varis algoritmes de control de trajectòries. Per últim, en el laboratori es disposa de càmeres i targes d'adquisició de dades. Així doncs els objectius que s'han proposat per el projecte són: 1. Estudi de la documentació i software proporcinats pels fabricants del robot i de l'entorn Webots; 2. Programació del software de l'odometria i realització de proves per comprovar-ne la precisió; 3. Disseny, programació i verificació del software dels algoritmes de planificació de trajectòries. Realització d'experiments per a comprovar-ne el funcionament i 4. Disseny, programació i verificació d'un sistema de visió artificial que permeti conèixer la posició absoluta del robot en l'entorn
Resumo:
In this paper we present a novel approach to assigning roles to robots in a team of physical heterogeneous robots. Its members compete for these roles and get rewards for them. The rewards are used to determine each agent’s preferences and which agents are better adapted to the environment. These aspects are included in the decision making process. Agent interactions are modelled using the concept of an ecosystem in which each robot is a species, resulting in emergent behaviour of the whole set of agents. One of the most important features of this approach is its high adaptability. Unlike some other learning techniques, this approach does not need to start a whole exploitation process when the environment changes. All this is exemplified by means of experiments run on a simulator. In addition, the algorithm developed was applied as applied to several teams of robots in order to analyse the impact of heterogeneity in these systems
Resumo:
This paper proposes a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot. Although the dominant approach, when using RL, has been to apply value function based algorithms, the system here detailed is characterized by the use of direct policy search methods. Rather than approximating a value function, these methodologies approximate a policy using an independent function approximator with its own parameters, trying to maximize the future expected reward. The policy based algorithm presented in this paper is used for learning the internal state/action mapping of a behavior. In this preliminary work, we demonstrate its feasibility with simulated experiments using the underwater robot GARBI in a target reaching task
Resumo:
This paper presents a complete control architecture that has been designed to fulfill predefined missions with an autonomous underwater vehicle (AUV). The control architecture has three levels of control: mission level, task level and vehicle level. The novelty of the work resides in the mission level, which is built with a Petri network that defines the sequence of tasks that are executed depending on the unpredictable situations that may occur. The task control system is composed of a set of active behaviours and a coordinator that selects the most appropriate vehicle action at each moment. The paper focuses on the design of the mission controller and its interaction with the task controller. Simulations, inspired on an industrial underwater inspection of a dam grate, show the effectiveness of the control architecture
Resumo:
This paper presents the design and implementation of a mission control system (MCS) for an autonomous underwater vehicle (AUV) based on Petri nets. In the proposed approach the Petri nets are used to specify as well as to execute the desired autonomous vehicle mission. The mission is easily described using an imperative programming language called mission control language (MCL) that formally describes the mission execution thread. A mission control language compiler (MCL-C) able to automatically translate the MCL into a Petri net is described and a real-time Petri net player that allows to execute the resulting Petri net onboard an AUV are also presented
Identification and Semiactive Control of Smart Structures Equipped with Magnetorheological Actuators
Resumo:
This paper deals with the problem of identification and semiactive control of smart structures subject to unknown external disturbances such as earthquake, wind, etc. The experimental setup used is a 6-story test structure equipped with shear-mode semiactive magnetorheological actuators being installed in WUSCEEL. The experimental results obtained have verified the effectiveness of the proposed control algorithms
Resumo:
This paper discusses predictive motion control of a MiRoSoT robot. The dynamic model of the robot is deduced by taking into account the whole process - robot, vision, control and transmission systems. Based on the obtained dynamic model, an integrated predictive control algorithm is proposed to position precisely with either stationary or moving obstacle avoidance. This objective is achieved automatically by introducing distant constraints into the open-loop optimization of control inputs. Simulation results demonstrate the feasibility of such control strategy for the deduced dynamic model
Resumo:
El Grup de Visió per Computador i Robòtica (VICOROB) del departament d'Electrònica, Informàtica i Automàtica de la Universitat de Girona investiga en el camp de la robòtica submarina. Al CIRS (Centre d’Investigació en Robòtica Submarina), laboratori que forma part del grup VICOROB, el robot submarí Ictineu és la principal eina utilitzada per a desenvolupar els projectes de recerca. Recentment, el CIRS ha adquirit un nou sistema de sensors d' orientació basat en una unitat inercial i un giroscopi de fibra òptica. Aquest projecte pretén realitzar un estudi d' aquests dispositius i integrar-los al robot Ictineu. D' altra banda, aprofitant les característiques d’aquests sensors giroscopics i les mesures d' un sonar ja integrat al robot, es vol desenvolupar un sistema de localització capaç de determinar la posició del robot en el pla horitzontal de la piscina en temps real