7 resultados para Physics--Experiments
em Universitat de Girona, Spain
Resumo:
The structural relaxation of pure amorphous silicon (a-Si) and hydrogenated amorphous silicon (a-Si:H) materials, that occurs during thermal annealing experiments, has been analyzed by Raman spectroscopy and differential scanning calorimetry. Unlike a-Si, the heat evolved from a-Si:H cannot be explained by relaxation of the Si-Si network strain but it reveals a derelaxation of the bond angle strain. Since the state of relaxation after annealing is very similar for pure and hydrogenated materials, our results give strong experimental support to the predicted configurational gap between a-Si and crystalline silicon
Resumo:
We review the progress in the field of front propagation in recent years. We survey many physical, biophysical and cross-disciplinary applications, including reduced-variable models of combustion flames, Reid's paradox of rapid forest range expansions, the European colonization of North America during the 19th century, the Neolithic transition in Europe from 13 000 to 5000 years ago, the description of subsistence boundaries, the formation of cultural boundaries, the spread of genetic mutations, theory and experiments on virus infections, models of cancer tumors, etc. Recent theoretical advances are unified in a single framework, encompassing very diverse systems such as those with biased random walks, distributed delays, sequential reaction and dispersion, cohabitation models, age structure and systems with several interacting species. Directions for future progress are outlined
Resumo:
This paper presents the distributed environment for virtual and/or real experiments for underwater robots (DEVRE). This environment is composed of a set of processes running on a local area network composed of three sites: 1) the onboard AUV computer; 2) a surface computer used as human-machine interface (HMI); and 3) a computer used for simulating the vehicle dynamics and representing the virtual world. The HMI can be transparently linked to the real sensors and actuators dealing with a real mission. It can also be linked with virtual sensors and virtual actuators, dealing with a virtual mission. The aim of DEVRE is to assist engineers during the software development and testing in the lab prior to real experiments
Resumo:
The classical description of Si oxidation given by Deal and Grove has well-known limitations for thin oxides (below 200 Ã). Among the large number of alternative models published so far, the interfacial emission model has shown the greatest ability to fit the experimental oxidation curves. It relies on the assumption that during oxidation Si interstitials are emitted to the oxide to release strain and that the accumulation of these interstitials near the interface reduces the reaction rate there. The resulting set of differential equations makes it possible to model diverse oxidation experiments. In this paper, we have compared its predictions with two sets of experiments: (1) the pressure dependence for subatmospheric oxygen pressure and (2) the enhancement of the oxidation rate after annealing in inert atmosphere. The result is not satisfactory and raises serious doubts about the model’s correctness
Resumo:
A new practical method to generate a subspace of active coordinates for quantum dynamics calculations is presented. These reduced coordinates are obtained as the normal modes of an analytical quadratic representation of the energy difference between excited and ground states within the complete active space self-consistent field method. At the Franck-Condon point, the largest negative eigenvalues of this Hessian correspond to the photoactive modes: those that reduce the energy difference and lead to the conical intersection; eigenvalues close to 0 correspond to bath modes, while modes with large positive eigenvalues are photoinactive vibrations, which increase the energy difference. The efficacy of quantum dynamics run in the subspace of the photoactive modes is illustrated with the photochemistry of benzene, where theoretical simulations are designed to assist optimal control experiments