7 resultados para Generalized Kähler geometry
em Universitat de Girona, Spain
Resumo:
The Aitchison vector space structure for the simplex is generalized to a Hilbert space structure A2(P) for distributions and likelihoods on arbitrary spaces. Central notations of statistics, such as Information or Likelihood, can be identified in the algebraical structure of A2(P) and their corresponding notions in compositional data analysis, such as Aitchison distance or centered log ratio transform. In this way very elaborated aspects of mathematical statistics can be understood easily in the light of a simple vector space structure and of compositional data analysis. E.g. combination of statistical information such as Bayesian updating, combination of likelihood and robust M-estimation functions are simple additions/ perturbations in A2(Pprior). Weighting observations corresponds to a weighted addition of the corresponding evidence. Likelihood based statistics for general exponential families turns out to have a particularly easy interpretation in terms of A2(P). Regular exponential families form finite dimensional linear subspaces of A2(P) and they correspond to finite dimensional subspaces formed by their posterior in the dual information space A2(Pprior). The Aitchison norm can identified with mean Fisher information. The closing constant itself is identified with a generalization of the cummulant function and shown to be Kullback Leiblers directed information. Fisher information is the local geometry of the manifold induced by the A2(P) derivative of the Kullback Leibler information and the space A2(P) can therefore be seen as the tangential geometry of statistical inference at the distribution P. The discussion of A2(P) valued random variables, such as estimation functions or likelihoods, give a further interpretation of Fisher information as the expected squared norm of evidence and a scale free understanding of unbiased reasoning
Resumo:
We present algorithms for computing approximate distance functions and shortest paths from a generalized source (point, segment, polygonal chain or polygonal region) on a weighted non-convex polyhedral surface in which obstacles (represented by polygonal chains or polygons) are allowed. We also describe an algorithm for discretizing, by using graphics hardware capabilities, distance functions. Finally, we present algorithms for computing discrete k-order Voronoi diagrams
Resumo:
We present an algorithm for computing exact shortest paths, and consequently distances, from a generalized source (point, segment, polygonal chain or polygonal region) on a possibly non-convex polyhedral surface in which polygonal chain or polygon obstacles are allowed. We also present algorithms for computing discrete Voronoi diagrams of a set of generalized sites (points, segments, polygonal chains or polygons) on a polyhedral surface with obstacles. To obtain the discrete Voronoi diagrams our algorithms, exploiting hardware graphics capabilities, compute shortest path distances defined by the sites
Resumo:
Compositional data analysis motivated the introduction of a complete Euclidean structure in the simplex of D parts. This was based on the early work of J. Aitchison (1986) and completed recently when Aitchinson distance in the simplex was associated with an inner product and orthonormal bases were identified (Aitchison and others, 2002; Egozcue and others, 2003). A partition of the support of a random variable generates a composition by assigning the probability of each interval to a part of the composition. One can imagine that the partition can be refined and the probability density would represent a kind of continuous composition of probabilities in a simplex of infinitely many parts. This intuitive idea would lead to a Hilbert-space of probability densities by generalizing the Aitchison geometry for compositions in the simplex into the set probability densities
Resumo:
A novel metric comparison of the appendicular skeleton (fore and hind limb) of different vertebrates using the Compositional Data Analysis (CDA) methodological approach it’s presented. 355 specimens belonging in various taxa of Dinosauria (Sauropodomorpha, Theropoda, Ornithischia and Aves) and Mammalia (Prothotheria, Metatheria and Eutheria) were analyzed with CDA. A special focus has been put on Sauropodomorpha dinosaurs and the Aitchinson distance has been used as a measure of disparity in limb elements proportions to infer some aspects of functional morphology
Resumo:
The author studies random walk estimators for radiosity with generalized absorption probabilities. That is, a path will either die or survive on a patch according to an arbitrary probability. The estimators studied so far, the infinite path length estimator and finite path length one, can be considered as particular cases. Practical applications of the random walks with generalized probabilities are given. A necessary and sufficient condition for the existence of the variance is given, together with heuristics to be used in practical cases. The optimal probabilities are also found for the case when one is interested in the whole scene, and are equal to the reflectivities
Resumo:
En aquesta tesi es solucionen problemes de visibilitat i proximitat sobre superfícies triangulades considerant elements generalitzats. Com a elements generalitzats considerem: punts, segments, poligonals i polígons. Les estrategies que proposem utilitzen algoritmes de geometria computacional i hardware gràfic. Comencem tractant els problemes de visibilitat sobre models de terrenys triangulats considerant un conjunt d'elements de visió generalitzats. Es presenten dos mètodes per obtenir, de forma aproximada, mapes de multi-visibilitat. Un mapa de multi-visibilitat és la subdivisió del domini del terreny que codifica la visibilitat d'acord amb diferents criteris. El primer mètode, de difícil implementació, utilitza informació de visibilitat exacte per reconstruir de forma aproximada el mapa de multi-visibilitat. El segon, que va acompanyat de resultats d'implementació, obté informació de visibilitat aproximada per calcular i visualitzar mapes de multi-visibilitat discrets mitjançant hardware gràfic. Com a aplicacions es resolen problemes de multi-visibilitat entre regions i es responen preguntes sobre la multi-visibilitat d'un punt o d'una regió. A continuació tractem els problemes de proximitat sobre superfícies polièdriques triangulades considerant seus generalitzades. Es presenten dos mètodes, amb resultats d'implementació, per calcular distàncies des de seus generalitzades sobre superfícies polièdriques on hi poden haver obstacles generalitzats. El primer mètode calcula, de forma exacte, les distàncies definides pels camins més curts des de les seus als punts del poliedre. El segon mètode calcula, de forma aproximada, distàncies considerant els camins més curts sobre superfícies polièdriques amb pesos. Com a aplicacions, es calculen diagrames de Voronoi d'ordre k, i es resolen, de forma aproximada, alguns problemes de localització de serveis. També es proporciona un estudi teòric sobre la complexitat dels diagrames de Voronoi d'ordre k d'un conjunt de seus generalitzades en un poliedre sense pesos.