3 resultados para 1530
em Universitat de Girona, Spain
Resumo:
The aim of traffic engineering is to optimise network resource utilization. Although several works on minimizing network resource utilization have been published, few works have focused on LSR label space. This paper proposes an algorithm that uses MPLS label stack features in order to reduce the number of labels used in LSPs forwarding. Some tunnelling methods and their MPLS implementation drawbacks are also discussed. The algorithm described sets up the NHLFE tables in each LSR, creating asymmetric tunnels when possible. Experimental results show that the algorithm achieves a large reduction factor in the label space. The work presented here applies for both types of connections: P2MP and P2P
Resumo:
In networks with small buffers, such as optical packet switching based networks, the convolution approach is presented as one of the most accurate method used for the connection admission control. Admission control and resource management have been addressed in other works oriented to bursty traffic and ATM. This paper focuses on heterogeneous traffic in OPS based networks. Using heterogeneous traffic and bufferless networks the enhanced convolution approach is a good solution. However, both methods (CA and ECA) present a high computational cost for high number of connections. Two new mechanisms (UMCA and ISCA) based on Monte Carlo method are proposed to overcome this drawback. Simulation results show that our proposals achieve lower computational cost compared to enhanced convolution approach with an small stochastic error in the probability estimation
Resumo:
In this paper we extend the reuse of paths to the shot from a moving light source. In the classical algorithm new paths have to be cast from each new position of a light source. We show that we can reuse all paths for all positions, obtaining in this way a theoretical maximum speed-up equal to the average length of the shooting path