17 resultados para Álgebra TK
Resumo:
Oferim als estudiants universitaris i als lectors interessats aquesta guia didàctica de la matemàtica universitària com a fruit dels nostres anys de docència de les matemàtiques a la Universitat. El resultat final ha esdevingut una col·lecció de setze petits volums agrupats en els dos mòduls d'Àlgebra Lineal i de Càlcul Infinitesimal. Dins la part d’Àlgebra matricial, aquest volum és continuació natural de l’anterior, Matrius, ja que el determinant és un valor numèric que s’associa a una matriu quadrada. Amb el seu estudi aconseguirem una notació millor i un criteri unificat de resolució de sistemes d’equacions, diagonalització de matrius, etc., com veurem en els propers volums
Resumo:
Oferim als estudiants universitaris i als lectors interessats aquesta guia didàctica de la matemàtica universitària com a fruit dels nostres anys de docència de les matemàtiques a la Universitat. El resultat final ha esdevingut una col·lecció de setze petits volums agrupats en els dos mòduls d'Àlgebra Lineal i de Càlcul Infinitesimal. En aquest volum es comença definint la terminologia bàsica dels sistemes, utilitzant la nomenclatura i els conceptes apresos en els volums anteriors. A partir del concepte de rang d’una matriu es dedueix l’important teorema de Rouché-Fröbenius en el qual s’analitzen les condicions perquè un sistema sigui compatible, i a continuació s’introdueixen els principals mètodes de resolució de sistemes d’equacions lineals. Finalment, es fa un breu estudi dels sistemes d’equacions no lineals, i dels sistemes d’equacions diofàntiques que són aquells en què només té sentit considerar les solucions enteres de les incògnites
Resumo:
Oferim als estudiants universitaris i als lectors interessats aquesta guia didàctica de la matemàtica universitària com a fruit dels nostres anys de docència de les matemàtiques a la Universitat. El resultat final ha esdevingut una col·lecció de setze petits volums agrupats en els dos mòduls d'Àlgebra Lineal i de Càlcul Infinitesimal
Resumo:
Oferim als estudiants universitaris i als lectors interessats aquesta guia didàctica de la matemàtica universitària com a fruit dels nostres anys de docència de les matemàtiques a la Universitat. El resultat final ha esdevingut una col·lecció de setze petits volums agrupats en els dos mòduls d'Àlgebra Lineal i de Càlcul Infinitesimal. El primer volum de la col•lecció, s’inicia amb les nocions primàries del conjunt, element i pertinença que constitueixen el pilar bàsic del llenguatge matemàtic. Tot seguit tractem el tema de les relacions binàries entre els elements d’un conjunt, destacant-hi entre elles les relacions d’equivalència que, com veurem en el proper volum, permetran la fonamentació de les diferents classes de nombres. Finalment, es tracten les aplicacions entre conjunts, un concepte que es desenvoluparà plenament en l’estudi del Càlcul Funcional
Resumo:
Oferim als estudiants universitaris i als lectors interessats aquesta guia didàctica de la matemàtica universitària com a fruit dels nostres anys de docència de les matemàtiques a la Universitat. El resultat final ha esdevingut una col·lecció de setze petits volums agrupats en els dos mòduls d'Àlgebra Lineal i de Càlcul Infinitesimal. El present volum continua l’estudi de l’Àlgebra moderna iniciada en l’anterior volum. Es comença amb la noció de llei de composició, una operació entre els elements d’un conjunt que utilitzarem pel posterior estudi del concepte d’estructura algebraica, de gran importància en l’Àlgebra moderna. Tot seguit es fa una senzilla introducció a les estructures algebraiques més importants, com són les de grup, anell i cos, fent a més un repàs a les diferents classes de nombres: enters, racionals, reals i complexos
Resumo:
Oferim als estudiants universitaris i als lectors interessats aquesta guia didàctica de la matemàtica universitària com a fruit dels nostres anys de docència de les matemàtiques a la Universitat. El resultat final ha esdevingut una col·lecció de setze petits volums agrupats en els dos mòduls d'Àlgebra Lineal i de Càlcul Infinitesimal. En aquest volum es generalitza en primer lloc el concepte d'aplicació entre dos espais vectorials i s'introdueix la important definició d'aplicació lineal. Pel seu estudi s'utilitza l'àlgebra matricial. A continuació es desenvolupen els temes de valors i vectors propis, la diagonalització d'endomorfismes i l'estudi de les formes quadràtiques
Resumo:
Oferim als estudiants universitaris i als lectors interessats aquesta guia didàctica de la matemàtica universitària com a fruit dels nostres anys de docència de les matemàtiques a la Universitat. El resultat final ha esdevingut una col·lecció de setze petits volums agrupats en els dos mòduls d'Àlgebra Lineal i de Càlcul Infinitesimal. Amb aquest sisè volum de la col•lecció iniciem l’estudi de l’Àlgebra vectorial a partir de conceptes propers a la intuïció com són els vectors del pla i de l’espai per, a continuació, fer una generalització del concepte de vector a altres ens matemàtics com polinomis, successions, magnituds econòmiques, etc. En aquest volum utilitzarem sovint la notació matricial, ja coneguda i emprada en volums anteriors, i que esdevé una eina idònia per facilitar la notació dels conceptes i del càlcul entre vectors. Seguim amb l’estudi axiomàtic de l’estructura d’espai vectorial i les seves propietats, que com veurem en el proper volum ens permetrà, entre altres aplicacions a l’economia, deduir els valors i vectors propis d’un endomorfisme i diagonalitzar formes quadràtiques
Resumo:
Compositional data analysis motivated the introduction of a complete Euclidean structure in the simplex of D parts. This was based on the early work of J. Aitchison (1986) and completed recently when Aitchinson distance in the simplex was associated with an inner product and orthonormal bases were identified (Aitchison and others, 2002; Egozcue and others, 2003). A partition of the support of a random variable generates a composition by assigning the probability of each interval to a part of the composition. One can imagine that the partition can be refined and the probability density would represent a kind of continuous composition of probabilities in a simplex of infinitely many parts. This intuitive idea would lead to a Hilbert-space of probability densities by generalizing the Aitchison geometry for compositions in the simplex into the set probability densities
Resumo:
Oferim als estudiants universitaris i als lectors interessats aquesta guia didàctica de la matemàtica universitària com a fruit dels nostres anys de docència de les matemàtiques a la Universitat. El resultat final ha esdevingut una col·lecció de setze petits volums agrupats en els dos mòduls d'Àlgebra Lineal i de Càlcul Infinitesimal. Aquest volum tracta les principals característiques que poden tenir les gràfiques de les funcions. S’estudien en primer lloc les aproximacions polinòmiques d’una corba en un punt amb la coneguda fórmula de Taylor. En la segona part es fa un anàlisi del càlcul de les asímptotes, el creixement i decreixement, els punts extrems, la concavitat i convexitat i també dels punts d’inflexió
Resumo:
Oferim als estudiants universitaris i als lectors interessats aquesta guia didàctica de la matemàtica universitària com a fruit dels nostres anys de docència de les matemàtiques a la Universitat. El resultat final ha esdevingut una col·lecció de setze petits volums agrupats en els dos mòduls d'Àlgebra Lineal i de Càlcul Infinitesimal. En aquest volum iniciem amb l’estudi de les derivades. Des de l’establiment, a la segona meitat del segle XVII, del Càlcul infinitesimal per Newton i Leibniz de manera independent, amb l’objectiu posat en la determinació de la recta tangent a una corba en un punt donat, el concepte de derivada ha tingut un paper preeminent en l’estudi del ritme de variació d’una funció i ha suposat una eina de gran utilitat en l’estudi de molts problemes de les ciències exactes i experimentals
Resumo:
Oferim als estudiants universitaris i als lectors interessats aquesta guia didàctica de la matemàtica universitària com a fruit dels nostres anys de docència de les matemàtiques a la Universitat. El resultat final ha esdevingut una col·lecció de setze petits volums agrupats en els dos mòduls d'Àlgebra Lineal i de Càlcul Infinitesimal. El present volum s’inicia amb un estudi de les nocions de la topologia de Rn , que creiem necessari per analitzar amb un mínim de rigor el concepte de continuïtat d’una funció, que tractem en aquest mateix volum, i el concepte de derivabilitat que analitzem en el volum següent. Així mateix, es realitza un estudi de les successions i sèries numèriques, noció que emprarem també per definir el límit d’una funció en un punt. Malgrat que incloem les definicions rigoroses d’alguns conceptes, hem volgut fugir deliberadament de l’excessiu rigor per donar prioritat a les idees intuïtives que ens poden ajudar a entendre la pràctica dels conceptes
Resumo:
Oferim als estudiants universitaris i als lectors interessats aquesta guia didàctica de la matemàtica universitària com a fruit dels nostres anys de docència de les matemàtiques a la Universitat. El resultat final ha esdevingut una col·lecció de setze petits volums agrupats en els dos mòduls d'Àlgebra Lineal i de Càlcul Infinitesimal. Pensem que l’estudi de les funcions incloses en aquest volum és interessant per fer un repàs de molts conceptes ja vistos en l’ensenyament secundari, però que considerem indispensables per entendre bé els nous temes de càlcul funcional que ens proposem desenvolupar en els propers volums
Resumo:
Intrinsic resistance to the epidermal growth factor receptor (EGFR; HER1) tyrosine kinase inhibitor (TKI) gefitinib, and more generally to EGFR TKIs, is a common phenomenon in breast cancer. The availability of molecular criteria for predicting sensitivity to EGFR-TKIs is, therefore, the most relevant issue for their correct use and for planning future research. Though it appears that in non-small-cell lung cancer (NSCLC) response to gefitinib is directly related to the occurrence of specific mutations in the EGFR TK domain, breast cancer patients cannot be selected for treatment with gefitinib on the same basis as such EGFR mutations have been reported neither in primary breast carcinomas nor in several breast cancer cell lines. Alternatively, there is a general agreement on the hypothesis that the occurrence of molecular alterations that activate transduction pathways downstream of EGFR (i.e., MEK1/MEK2 - ERK1/2 MAPK and PI-3'K - AKT growth/survival signaling cascades) significantly affect the response to EGFR TKIs in breast carcinomas. However, there are no studies so far addressing a role of EGF-related ligands as intrinsic breast cancer cell modulators of EGFR TKI efficacy. We recently monitored gene expression profiles and sub-cellular localization of HER-1/-2/-3/-4 related ligands (i.e., EGF, amphiregulin, transforming growth factor-α, ß-cellulin, epiregulin and neuregulins) prior to and after gefitinib treatment in a panel of human breast cancer cell lines. First, gefitinibinduced changes in the endogenous levels of EGF-related ligands correlated with the natural degree of breast cancer cell sensitivity to gefitinib. While breast cancer cells intrinsically resistant to gefitinib (IC50 ≥15 μM) markedly up-regulated (up to 600 times) the expression of genes codifying for HERspecific ligands, a significant down-regulation (up to 106 times) of HER ligand gene transcription was found in breast cancer cells intrinsically sensitive to gefitinib (IC50 ≤1 μM). Second, loss of HER1 function differentially regulated the nuclear trafficking of HER-related ligands. While gefitinib treatment induced an active import and nuclear accumulation of the HER ligand NRG in intrinsically gefitinib-resistant breast cancer cells, an active export and nuclear loss of NRG was observed in intrinsically gefitinib-sensitive breast cancer cells. In summary, through in vitro and pharmacodynamic studies we have learned that, besides mutations in the HER1 gene, oncogenic changes downstream of HER1 are the key players regulating gefitinib efficacy in breast cancer cells. It now appears that pharmacological inhibition of HER1 function also leads to striking changes in both the gene expression and the nucleo-cytoplasmic trafficking of HER-specific ligands, and that this response correlates with the intrinsic degree of breast cancer sensitivity to the EGFR TKI gefitinib. The relevance of this previously unrecognized intracrine feedback to gefitinib warrants further studies as cancer cells could bypass the antiproliferative effects of HER1-targeted therapeutics without a need for the overexpression and/or activation of other HER family members and/or the activation of HER-driven downstream signaling cascades
Resumo:
A novel technique for estimating the rank of the trajectory matrix in the local subspace affinity (LSA) motion segmentation framework is presented. This new rank estimation is based on the relationship between the estimated rank of the trajectory matrix and the affinity matrix built with LSA. The result is an enhanced model selection technique for trajectory matrix rank estimation by which it is possible to automate LSA, without requiring any a priori knowledge, and to improve the final segmentation
Resumo:
Bimodal dispersal probability distributions with characteristic distances differing by several orders of magnitude have been derived and favorably compared to observations by Nathan [Nature (London) 418, 409 (2002)]. For such bimodal kernels, we show that two-dimensional molecular dynamics computer simulations are unable to yield accurate front speeds. Analytically, the usual continuous-space random walks (CSRWs) are applied to two dimensions. We also introduce discrete-space random walks and use them to check the CSRW results (because of the inefficiency of the numerical simulations). The physical results reported are shown to predict front speeds high enough to possibly explain Reid's paradox of rapid tree migration. We also show that, for a time-ordered evolution equation, fronts are always slower in two dimensions than in one dimension and that this difference is important both for unimodal and for bimodal kernels