200 resultados para CORRELACIÓN (ESTADÍSTICA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Realizar un estudio exhaustivo del Análisis Discriminante para evaluar su robustez con el fin de hacer las pertinentes recomendaciones al psicólogo aplicado; 2. Determinar criterios estadísticos que ayuden a las interpretaciones heurísticas de los coeficientes más relevantes, para la evaluación de las contribuciones de las variables a las funciones discriminantes. Primera investigación: Se trabajó con un diseño factorial 4x2x3x2x2 lo que supone 96 condiciones experimentales. Las cinco variables eran: a. Normalidad de las variables, b. Varianza de los grupos, c. Número de variables, d. Número de grupos, 5. Número de sujetos en cada grupo. Variable Dependiente: Para cada una de las 200 replicaciones Monte Carlo se obtuvieron las lambdas de Wilks, las V de Bartlett y su probabilidad asociada, como índice de la significación de criterio discriminante. Segunda investigación: Para esta investigación se replicó el diseño de la primera investigación, es decir, las 96 condiciones experimentales con todos los factores, otorgando ahora el perfil de diferencias grupales siguiente para las condiciones con tres grupos y para las condiciones con seis grupos. Se mantuvieron constantes las correlaciones entre las variables e iguales a las de la primera investigación, 0,70. El valor de los parámetros fue obtenido mediante el programa DISCRIMINANT del SPSS/PC+. Hardware: El trabajo de simulación se llevó a cabo con ocho ordenadores personales clónicos PC:PENTIUM/100 Mhz., con 16 MB de RAM. Software: Los procedimientos necesarios para la investigación fueron realizados en el lenguaje de programación GAUSS 386i, versión 3.1 (Aptech Systems, 1994). 1. Los métodos de simulación y concretamente, el método de muestreo bootstrap, son de gran utilidad para los estudios de robustez de las técnicas estadísticas, así como en los de inferencia estadística: cálculo de intervalos de confianza; 2. El Análisis Discriminante es una técnica robusta, siempre y cuando se cumpla la condición de homogeneidad de las varianzas; 3. El Análisis Discriminante no es robusto ante problemas de heterogeneidad en las siguientes condiciones: Con seis o menos variables,cuando los tamaños grupales son diferentes. Para tamaños iguales, si además se presenta una alteración conjunta de asimetría y apuntamiento; 4. Cuando la violación del supuesto de homogeneidad viene provocada porque la varianza mayor la presenta el grupo con menos sujetos la técnica se vuelve demasiado liberal, es decir, se produce un alto grado de error tipo I; 5. Los coeficientes de estructura son más estables e insesgados que los típicos; 6. Es posible determinar los intervalos confidenciales de los coeficientes de estructura mediante el procedimiento sugerido por Dalgleish (1994). 1. El Análisis Discriminante se puede utilizar siempre que se cumpla la condición de Homogeneidad de varianzas. Es por tanto, absolutamente necesario comprobar antes de realizar un Análisis Discriminante este principio, lo cual se puede llevar a cabo a través de cualquiera de los estadísticos pertinentes y, en especial, la prueba de Box; 2. Ante la heterogeneidad de varianzas si el número de variables independientes es seis o inferior, deberá tenerse en cuenta que el número de sujetos debe ser igual en todos los grupos y que las variables no presenten alteraciones conjuntas de asimetría y apuntamiento,por lo que, como paso previo deberá comprobarse la distribución de las variables y detectar si se presenta esta alteración. En cualquier otra condición, y ante la presencia de heterogeneidad de varianzas no se puede utilizar la técnica. Cuando el número de variables predictoras sea nueve o más, podrá utilizarse la técnica siempre, a excepción de diferentes tamaños grupales y no normalidad de las variables. El investigador aplicado deberá conocer la posibilidad que proponemos de apoyatura estadística para la toma de decisiones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen de la revista

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen del autor

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen basado en el del autor

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen de la publicación

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen basado en el de la publicación

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen basado en el de la publicación

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primer crédito del módulo número diez del área de mátemáticas del ciclo 12-16. Se estructura en: Descripción y estudio de fenómenos aleatorios. Inferencias estadísticas. Números Reales. En la primera parte del crédito se exponen los contenidos, objetivos didácticos, enumera las actividades de aprendizaje específicas y generales, su temporalización y las actividades de evaluación. En la segunda parte del crédito se incluye el material de soporte para cada una de las actividades de aprendizaje. En general son propuestas de experiencias que requieren una comprobación empírica y-o la utilización de dos programas informáticos: 'Bolas y Azar' y 'Lanzamiento de monedas'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crédito de matemáticas para ESO. Crédito dividido en dos bloques: la semejanza y la estadística. Los dos apartados tienen la proporcionalidad aritmética en común y por lo tanto, el cálculo también es un elemento esencial en la propuesta. Un objetivo principal es el de resolver problemas con agilidad y facilidad tanto si son reales como inventados. A través del trabajo se potencia que el alumno se interese por la autoevaluación objetiva. Se trabajan las escalas, la semejanza y la proporcionalidad. Se ofrece material para el trabajo del alumno y para el profesorado.