287 resultados para ANILLOS (ÁLGEBRA)
Resumo:
Planificar la enseñanza de la Matemática en la universidad, ciclo 1, y elaborar modelos para las pruebas de acceso. Conocer el uso de la Matemática en la práctica laboral. Determinar sistema de acceso a la universidad, contenidos matemáticos de COU y pruebas matemáticas de Selectividad, más idóneos, mediante un análisis comparado con otros países. Elaborar estudios introductorios de los principales temas matemáticos, que sirvan de ayuda a un profesorado heterogéneo. Número indeterminado de licenciados en Ingeniería, Física, Química, Biología, Medicina, Farmacia, Sociología, Economía, Psicología y Pedagogía en activo. Sistema de acceso a la universidad, pruebas y programas matemáticos en varios países. Contenidos matemáticos usuales en COU y la universidad. Se consideran las nociones matemáticas empleadas por la muestra en su práctica laboral. Sistema de acceso a la Universidad vigentes en Francia, RDA, Suiza, Austria, Gran Bretaña y EEUU. Contenidos matemáticos de los programas de las pruebas de acceso de varios países y España. Tipo de pruebas matemáticas empleado en varios países. Esta metodología: visión introductoria, enfoque histórico y alternativo y apoyo bibliográfico para cada contenido. Se detalla qué Matemáticas emplean los profesionales. Cálculo y análisis se usan bastante en todo sector laboral, álgebra y geometría, sobre todo en Ingenieria, por su relación con la tecnología, probabilidad y estadística, las más usadas, en carreras experimentales. Se detallan sistemas de acceso, pruebas y contenidos matemáticos en varios países, se recomienda que los examenes sean independientes para cada materia y los tribunales, nombrados por las universidades, tengan un representante del centro escolar. Las universidades dicten normas de acceso sin considerar expedientes académicos, el programa matemático sea más amplio y menos universitario, con métodos numéricos sencillos y aplicaciones prácticas. El examen consta de 2 partes, multirrespuesta y problemas, que evalúen objetivos de conocimiento, comprensión y aplicación y de síntesis y análisis. Se elaboraron 10 monografías: no reales, sucesiones y series. Convergencia y continuidad, espacios métricos y estructuras topológicas y algebraicas, cálculo diferencial, optimización, estructuras del álgebra, polinomios, álgebra lineal, geometría, probabilidad, estadística. Se han elaborado tres informes cualitativos, modalidades existentes en las pruebas de acceso a la universidad, contenidos de esas pruebas y enfoque didáctico que debe darse a las asignaturas matemáticas en el primer ciclo universitario, y un estudio de campo, cuantificación del uso de diversos tópicos matemáticos por parte de los titulados superiores, en la docencia, en la investigación y en el ejercicio profesional, como contribución a la mejora del nivel didáctico de las asignaturas de Matemáticas que se imparten en la universidad y del actual sistema de acceso a la Enseñanza Superior.
Resumo:
Mejorar la capacidad del alumnado de ESO para resolver problemas de Matemáticas mediante la práctica de la secuenciación en las fases de resolución de los mismos. Fomentar una actitud positiva hacia la resolución de problemas. 558 alumnos-as y 151 alumnos-as de primero de ESO de centros de la ciudad de Valladolid. Se aplica el cuestionario REPROMASE para conocer la actitud, opinión y creencias del alumnado hacia las Matemáticas. Se realiza una evaluación inicial para conocer el nivel del alumnado y los procedimientos empleados en la resolución de problemas y se procede a la aplicación del programa de intervención, consistente en una unidad didáctica sobre iniciación al álgebra. Las variables dependientes que se miden son: comprensión verbal de problemas, empleo de gráficos o dibujos, extracción de datos, previsión de resultado, planteamiento del problema, proceso de resolución, expresión de los resultados y comprobación de los mismos. Tras la intervención, se aplican dos pruebas de evaluación, una de recuerdo y cuestionarios de autoevaluación y de evaluación del programa de intervención. Empleando el paquete estadístico SPSS, se realizan análisis descriptivos, correlacionales, de varianza y covarianza y pruebas de regresión múltiple de los datos obtenidos. Cuestionario REPROMASE. Se observa que, con el uso de una metodología basada en la secuenciación, la actitud hacia las Matemáticas se mantiene en niveles similares durante todo el curso. Se constata la efectividad del programa de intervención, observándose una mejora en el rendimiento y una reducción en el número de errores en todos los pasos del proceso de resolución de problemas. Tras la aplicación del programa de intervención se observa una mejora de actitud del grupo experimental en cuanto a las expectativas ante las Matemáticas y la metodología del profesorado.
Resumo:
Evaluación comparativa trasnacional de la enseñanza y el aprendizaje escolar en matemáticas y ciencias, en estudiantes de 45 países, abarcando tres niveles educativos. 7.500 estudiantes por país (7.596 españoles), siendo el 49,2 por cien de séptimo de EGB y el 50,8 por cien de octavo de EGB, pertenecientes a 150 escuelas públicas y privadas. Los aprendizajes se evalúan mediante cuestionarios. Análisis estadísticos de la varianza y correlaciones. La media internacional en el rendimiento de matemáticas es 513 puntos (octavo) y 484 (séptimo); los estudiantes españoles han obtenido una media de 487 y 448. Por orden de puntuaciones medias de matemáticas, España ocupa el lugar 31 en octavo, sobre 41 países, y el lugar 32 en séptimo, sobre 39 países, indicadores claramente por debajo de la media, de modo que la situación de rendimiento comparativo es baja. En ciencias, la media internacional del rendimiento es 516 puntos (octavo) y 479 puntos (séptimo); nuestro país tiene una media de 517 y 477, siendo el país más próximo a la media global, aunque ligeramente por debajo de ella, de modo que, en relación con todo el conjunto de países participantes, el rendimiento en ciencias se puede considerar intermedio. Las puntuaciones porcentuales en las distintas áreas de matemáticas son más altas en el área Representación de datos y probabilidad, mientras el área de Álgebra se encuentra en torno a la media siendo las áreas más bajas Fracciones y Medida. Los chicos tienen puntuaciones significativamente superiores a las chicas en Física, Geología y Química, y las diferencias no son significativas en Medio Ambiente-naturaleza de la ciencia; en Biología, la mayoría de los países no tienen diferencias de género, y sin embargo, España es una excepción pues, en ambos cursos, los chicos tienen puntuaciones significativamente mayores que las chicas. Cabe destacar algunas variables relacionadas negativamente con el rendimiento como las metodologías didácticas de trabajar problemas o proyectos en grupos pequeños y las preguntas del profesor sobre lo que los alumnos saben del tema nuevo, la proporción de estudiantes de un centro que se encuentran en situaciones desfavorecidas (bajo estatus económico, padres sin estudios, problemas de aprendizaje, de salud o de alimentación). Otras variables cuya relación con el rendimiento es negativa son la capacidad de pensar creativamente y la mayor familiaridad del profesorado con las guías de orientaciones pedagógicas (en el caso de matemáticas) y para ciencias, entender conceptos, principios y estrategias o la dedicación del director del centro a las tareas de administración interna. Un resultado notable encontrado es la relación positiva y significativa entre el rendimiento y el número de alumnos por clase (ratio), que contradice una creencia muy extendida en la enseñanza (mejor rendimiento en las clases más pequeñas). En esta misma línea, también cabe notar la ausencia de relación empírica con el rendimiento de muchas variables, tradicionalmente consideradas factores importantes del aprendizaje, como por ejemplo, la frecuencia de reuniones del profesorado, las metodologías de agrupamientos de alumnos, las actividades de aprendizaje o las técnicas de evaluación.
Resumo:
a) Del estudio piloto: determinar y analizar el estilo de aprendizaje, el nivel de conocimientos, las aptitudes y actitudes, el rendimiento y otras características, etc. de los sujetos que acceden a los estudios de Ingeniería. b) De la segunda parte del estudio: 1.- Determinar el rendimiento cuantitativo de los alumnos, número de sujetos que aprueba el primer curso por convocatorias y años; 2.- Determinar si existe relación entre el índice de suspensos y aptitudes diferenciales; 3.- Detectar qué materias son más difíciles para los alumnos a través de los resultados; 4.- Analizar áreas de influencia en el rendimiento académico bajo y 5.- Comprobar la utilidad del método de análisis para detectar causas de fracaso. a) 105 sujetos de la Escuela de Ingenieros de Minas y 93 de la de Ingenieros Industriales de la UPM; b) Debido al abandono antes de finalizar el primer curso, la muestra quedó reducida a 177 sujetos, 90 de Minas y 87 de Industriales. a) Pretest, medición de las variables personalidad, estilo de aprendizaje, aptitudes específicas, hábitos de estudios, datos personales, familiares, sociales, académicos y motivacionales. b) variable criterio el rendimiento académico de los alumnos, variables predictivas el nivel de conocimientos al inicio de la carrera, el desarrollo académico del curso, aptitudes específicas y aspectos familiares. Test D-70, DAT, cuestionario de personalidad 16 PF, inventario de estilos de aprendizaje (IEA), encuesta elaborada ad-hoc de datos personales, prueba de perfil de conocimientos, calificaciones de los sujetos y protocolo de entrevista estructurado. a) Índices descriptivos; b) Análisis de regresión lineal múltiple. a) Los alumnos que acceden a estos estudios se caracterizan por tener mayoritariamente estilos de aprendizaje convergente y asimilador, unas calificaciones académicas similares o superiores a la media nacional, y un bajo nivel de conocimientos en las distintas materias. b) El de abandonos en el primer curso es 10.6 por ciento (6.45 Industriales y 13.3 Minas). El primer curso lo superan en un sólo año el 22.39 por ciento. En dos el 29.85 por ciento y en más de dos el 47.76 por ciento. Las asignaturas más difíciles son: Cálculo y Álgebra para Industriales, y Álgebra y Química para Minas. Los indicadores que predicen con gran fiabilidad el éxito académico final son los exámenes parciales. No se encuentran relaciones significativas entre el índice de éxito o fracaso en determinadas asignaturas y las aptitudes específicas de los sujetos a excepción de la aptitud numérica y razonamiento espacial. El método de análisis utilizado resulta válido para detectar causas de fracaso académico en la Universidad Politécnica por lo que se puede hacer extensible a otras investigaciones y muestras más amplias de todas las Ingenierías.
Resumo:
Diseño y aplicación de una prueba de conocimientos que permitiese obtener información acerca del perfil de conocimientos con los que acceden a la Universidad los alumnos del primer curso de carrera de las Escuelas Técnicas Superiores de la Universidad Politécnica de Madrid. Curso 1979-80: 583 alumnos de nuevo ingreso de la Facultad de Informática, Escuela Técnica Superior de Ingenieros Navales y ETS de Ingenieros de Caminos. Curso 1980-81: 1113 alumnos no repetidores. De la muestra global se tomaron dos colectivos de 102 alumnos cada uno (Navales e Informática) para el análisis de correlación entre las puntuaciones obtenidas en la prueba y las obtenidas en el primer año de carrera. Se tomaron 35 profesores de Escuelas Técnicas Superiores y de la Facultad de Informática y 16 de Escuelas Técnicas de Grado Medio y 269 alumnos. La prueba diseñada versa sobre 3 materias básicas y fundamentales para cursar sin dificultades supletorias el primer curso de carrera: Matemáticas, Física y Química. Cada materia se clasificó en 3 áreas. 2 Aplicaciones: 1) Curso 79-80, 2) En el 80-81. La aplicación se desarrolló en 2 sesiones (2 horas de duración cada una). Se pasó una encuesta a una muestra de profesores y alumnos para conocer su opinión acerca de la prueba y obtener información adicional. Se analizaron las materias que son menos conocidas por los alumnos y su orden de dificultad. Bibliografía. Prueba objetiva de perfil de conocimientos. Encuesta. Estadística descriptiva. Del análisis global se deduce: Los alumnos muestran un nivel bajo de conocimientos en las áreas de Geometría y Aritmética elemental, propio del primer ciclo de EGB. En Física se aprecia una falta conceptual y de coordinación en la secuencia de conocimientos y falta de base en Cinemática y Electricidad. Falta de preparación en temas como Química Orgánica. De la correlación entre los resultados de la prueba y los obtenidos por los alumnos en los cursos de carrera, se observa: existe una buena correlación con las asignaturas de Álgebra y Cálculo y mejor aún en Geometría, Trigonometría y Logaritmos. La correlación es mayor en el caso de Física que en el de Química. En general, las pruebas han sido bien acogidas por profesores y alumnos. Existe una fuerte dependencia entre el nivel de los alumnos al acceder a la Universidad Politécnica y los resultados académicos que en ella se obtienen y esta dependencia es más fuerte en Matemáticas que en Física y Química.
Resumo:
Estudiar los errores cometidos por los alumnos en la resolución de problemas de enunciados con solución algebraica, analizando qué procesos siguen para pasar del lenguaje natural al lenguaje algebraico. Para la primera prueba 180 alumnos: 140 de primero de BUP, nivel medio y 40 de primero de FP nivel bajo. Grupos correspondientes a distintos institutos de Bachillerato y FP de Madrid. Segunda prueba a 140 alumnos de primero de BUP (los mismos de la prueba inicial). Investigación psicopedagógica, se parte de la idea de resolución de problemas de enunciado con solución algebraica, traducción del lenguaje natural al algebraico y destrezas de cálculo. Se pensó que las tres fases tendrían aproximadamente el mismo nivel de dificultad. Se comenzó por analizar la influencia de diferentes enunciados para un mismo problema, enunciados reales sobre los que suelen trabajar los alumnos. Se pasaron unas pruebas, 1.-Variables: influencia de determinadas frases, que se pudiese resolver por sistemas sencillos de ecuaciones de primer grado, considerar la operación por la que están relacionadas las variables, se hacen 4 grupos con los alumnos (A, B, C, D), la prueba ha sido pasada antes de que los alumnos hayan estudiado los temas correspondientes. 2.-Variables que pueden influir en la resolución de problemas verbales. 3.-Se realizan entrevistas y se pasan cuestionarios. Enunciados de libros de texto de primero de BUP. Trabajos realizados en la misma línea y consulta de bibliografía adecuada. Tablas de porcentajes. Se han observado errores conceptuales que inciden en las dificultades de los alumnos en el aprendizaje del Álgebra. Se ha constatado a través de las entrevistas que los errores de traducción tienen entidad por sí mismos y que están relacionados con problemas semánticos y sintácticos del lenguaje algebraico. En la tercera prueba los errores de traducción siguen apareciendo, aunque el problema venga dado por un dibujo o tabla. Estos errores se producen con cierta independencia de la capacidad de manipulación algebraica del sujeto. Se ha encontrado un modelo de error que llamamos letra para representar objetos o letra como objeto, aunque en algunos casos permite alcanzar soluciones correctas, supone un bajo nivel de respuesta o se aprecian errores de inversión, pues se manifiesta una inversión de los coeficientes que aparecen en las ecuaciones. Todas estas formas de pensar equivocadas están profundamente admitidas en nuestros alumnos y ofrecen gran resistencia a dejarse sustituir por otras. Sería provechoso para los profesores integrar en su trabajo habitual técnicas de diagnóstico y tratamiento de los conceptos y falsos conceptos para que no se produzcan inhibiciones en los alumnos y adquieran más seguridad en el aprendizaje.
Resumo:
Conocer y valorar las posibilidades educativas del material 'Los números en color' en los niños invidentes. Niños ciegos del Colegio Nuestra Señora del Socorro, de la Fundación Burguet de Valencia. La metodología se apoya en la práctica docente con niños invidentes en su ambiente normal de escolarización y en la recogida de información a través de la grabación en vídeo de las sesiones escolares desarrolladas. Mediante una técnica próxima a la entrevista clínica con una pareja de alumnos, se experimenta de modo casi personalizado. Debido a las características del material, se sigue el proceso tacto-acción-comprensión a partir de las preguntas y requerimientos del entrevistador, dirigidas en una primera parte de la experiencia a conocer las carencias y posibilidades del material en lo que se refiere a su papel de modelo matemático para los niños invidentes y, en una segunda parte, encaminadas a la búsqueda y ensayo de aquellas modificaciones que permitan paliar las carencias encontradas en la forma tradicional de las regletas. Se trata de saber si los números en color funcionan con los niños ciegos o no, y si es así, de valorar sus posibilidades educativas. Se han impartido 20 sesiones de aproximadamente 30 minutos utilizando las regletas de cuisenaire tradicionales de madera; a continuación se han impartido otras 20 sesiones de 30 minutos a dos alumnas ciegas totales empleando las regletas de cuisenaire modificadas de acuerdo con sus hipótesis. El niño ciego manipula las regletas de hierro tan rápidamente y con la misma eficacia con que los niños videntes manipulan las regletas de madera de cuisenaire. Teniendo en cuenta que los números en color tradicionales tienen sobradamente demostrada su utilidad en el aprendizaje del Álgebra y de la Aritmética con niños videntes, se infiere que el material es el idóneo para esta misma enseñanza con niños ciegos. Como quiera que las regletas de hierro podrían ser utilizadas por niños videntes con la misma eficacia que las regletas de madera, puede afirmarse que el material facilitará sensiblemente el aprendizaje del Álgebra y de la Aritmética a los niños ciegos integrados en grupos de alumnos videntes.
Resumo:
Recogida de información para reformar el currículum matemático en la Escuela de Ingeniería. Se trata de conocer las necesidades matemáticas en cada asignatura de la carrera, en cada práctica profesional concreta y la opinión de estudiantes y profesionales sobre utilidad de la formacion matemática recibida, la racionalidad del currículum actual, las nuevas tendencias en la práctica matemática y su función formativa o instrumental. Son tres: 1) profesores encargados de de cada asignatura de la Escuela Técnica de Ingenieros Industriales de Barcelona; 2) 119 alumnos de quinto curso; 3) 600 ingenieros vinculados al Colegio de Ingenieros Industriales de Cataluña. Muestras representativas. Se consideran conceptos matemáticos aislados en los textos oficiales y de consulta, elegidos por la muestra 1, de cada asignatura, resumiéndolos en un programa básico común, álgebra y cálculo. Se considera el nivel de la matemática empleada y la profundización en el uso de cada concepto básico definido en distintas situaciones y funciones laborales de la muestra 3. Se consideran las opiniones de las muestras, por especialidades, sobre desajustes matemáticos intra asignaturas y entre el primer ciclo y la especialidad; distribuida por su situación y función laboral, tamaño de empresa, etc. Sobre las nuevas tendencias matemáticas en la práctica laboral, ordenadores, y desajustes entre ésta y la formación matemática recibida; sobre la función formativa o instrumental de la Matemática en la ingeniería. Se relacionan por asignaturas y áreas los conceptos matemáticos aislados, articulándolos en un programa básico común, álgebra y cálculo comparado con el elaborado sobre textos comunes a todas las asignaturas, destaca la identidad de contenidos, consecuencia de la indiferenciación de las especialidades. Respecto a la encuesta a profesionales resalta el bajo uso que se hace de Matemáticas más elevadas al cálculo diferencial integral, 20 por ciento, o incluso al álgebra elemental, 47 por ciento, para el 55 por ciento de la muestra no hay lugar para la Matemática en su trabajo y para el 60 por ciento la formación recibida ha sido suficiente. Al ingeniero le interesan las Matemáticas aunque no las use; hay unanimidad en resaltar el caracter formativo e instrumental de la Matemática. Respecto a la encuesta al alumnado, resaltan sus críticas a la coordinación entre asignaturas de Matemáticas y a los desajustes formativos respecto a la especialidad, sobrevaloración y concentración de las Matemáticas en un solo ciclo, se destaca el valor formativo de la Matemática por encima del instrumental. Se propone una metodología para abordar la reforma del actual currículum de Matemáticas. Se sugiere una mayor preocupación por parte del profesorado del resto de asignaturas en busca de una mayor compenetración. Comparando el desajuste evidenciado entre la importancia dada a las Matemáticas en el currículum y su uso profesional, con la realidad de otros países, se desprende que el fenómeno es sólo español, producto de su peculiar sistema económico y político.
Resumo:
En el presente trabajo se expone un resumen del desarrollo curricular de las Matemáticas, asignatura que se imparte en cuarto curso de la Licenciatura de Psicopedagogía de la Universidad de Valladolid. En primer lugar, se expone la estructura del sistema educativo alemán, como una muestra de los currículos de países influyentes, para dar paso al currículo español de Matemáticas. A continuación, se esboza el uso de la calculadora frente al ordenador, se señalanlas dificultades del sistema de numeración hindú-arábigo y las propias de la representación gráfica de funciones. Después se describen algunas dificultades de aprendizaje en Geometría, Estadística, y Probabilidad, en Álgebra y en Análisis. Se dedica un apartado a procedimientos comparativos de textos matemáticos, y finalmente, se analizan las pruebas y modos de evaluación.
Resumo:
Resumen tomado parcialmente de la revista.- El artículo forma parte de un monográfico dedicado a Psicología de las Matemáticas
Resumo:
No consta su publicación
Resumo:
Elaborar un modelo sobre la configuración cognitivo-emocional de los alumnos de altas habilidades de la Comunidad Autónoma de la Región de Murcia que permita ofrecer pautas para la respuesta educativa adecuada según el perfil cognitivo que muestran los alumnos. Muestra invitada: profesores y alumnos de 467 colegios de la Región de Murcia (372 públicos y 95 privados) con un total de 123.616 alumnos de Infantil y Primaria. la muestra real se compone de 505 alumnos y los que superaron el proceso de screaning 187 de edades comprendidas entre los 5 y los 12 años.. El trabajo empírico se lleva a cabo en tres fases. En la primera de preidentificación participaron los profesores que valoraron la presencia en sus aulas de algún tipo de excepcionalidad, rareza y valía cumplimentando una escala de nominación. Se identificaron los 505 alumnos sobre los que se efectuó una nueva selección con los alumnos que habían sido valorados con percentiles iguales o superiores a 75 en dos de la dimensiones consignadas.. 1. Escala de Nominación de Profesores (escala tipo Likert compuesta por 28 items y basada en la teoría de los tres anillos de Renzulli) 2. Test Breve de Inteligencia de Kaufman (K-BIT, 1994) 3. Batería de Aptitudes Diferenciales y Generales (de Yuste, Martínez y Galve, 1998) 4. Test de Pensamiento Creativo de Torrance (TTCT, 1974) 5. Test Autoevaluativo Multifactorial de Adaptación Infantil (TAMAI de Hernández y Hernández, 2002) 6. Cuestionario de Personalidad para Niños (ESPQ de Porter y Cattell, 1990) 7. Cuestionario de Inteligencia Emocional de Chiriboga y Franco (2002) 8. Batería de Socialización (Silva y Martorell, 1989).. Análisis descriptivos e infereciales. Análisis diferenciales mediante pruebas T para muestras independientes sobre las áreas evaluadas en las variables género y tipo de centro. F de ANOVA de un factor para los análisis diferenciales sobre las áreas evaluadas en las variables perfil cognitivo y ciclo educativo y análisis de fiabilidad de las escalas de nominación.. Entre los resultados:1. Los alumnos superdotados o talentosos muestran niveles altos de inteligencia emocional. 2. Solo en un 19,2 por ciento de los niños con altas habilidades se ha constatado inadecuación general 3. Los alumnos superdotados cuentan con niveles altos de socialización.. Lo más importante para los niños superdotados o talentosos es diseñar un contexto escolar y social en el que se recompensen las ideas brillantes y no se reprima lo excepcional, inusual u original, cuando todo esto se ponga en marcha..
Resumo:
Se pretende, ciñiéndose al caso español, realizar un estudio de la evolución evidente de las matemáticas a lo largo de los últimos años, de forma que al final del mismo, se pueda cuantificar y por tanto valorar y comparar los distintos planes existentes en los últimos años en la enseñanza primaria y secundaria. El estudio analiza el comportamiento del alumnado procedente del plan de estudio de 1970, respecto a los alumnos procedentes de planes anteriores y posteriores a él. Estudio tanto cuantitativo como cualitativo del contenido de la asignatura -matemáticas- en los distintos planes de estudios analizados: plan de estudios del 45, del 70 y del 81. Se consideran factores sociales como el sexo, factores relativos a la política universitaria tales como el número de profesores, la dificultad, las nuevas carreras, el número de centros. Por último se analiza y observa la repercusión del alumnado de la universidad española desde el curso 60-61 hasta el 84-85 respecto a los cambios en los planes académicos en el momento de elección de carrera. En el periodo estudiado se observa que el comportamiento del alumnado desde el curso 60-61 hasta el 84-85 presenta grandes cambios: estancamiento y decrecimiento de las carreras más teóricas como Derecho y todas las pertenecientes a Letras. Se descartan como elementos determinantes en la elección de carreras factores sociales como el sexo, o político-culturales como el número de profesores, nuevas carreras, número de centros, etc. Deduciéndose que son los cambios en los planes académicos, en lo concerniente a la mayor o menor profundización en las matemáticas, lo que repercute en la elección de carreras por parte del alumnado.
Resumo:
Desarrollo de un proyecto de innovación dentro del Área de las Matemáticas en el IES 'Máximo Laguna'. El método de trabajo se hace a través de la introducción de calculadoras gráficas en el aula, a fin de trabajar los contenidos relativos a Geometría, Funciones y Estadística. El proyecto tiene como objetivos investigar la validez del método de trabajo utilizado, el número y grado de significación de los descubrimientos realizados por parte del alumnado y a viabilidad de introducción de contenidos de niveles más avanzados en cursos inferiores que posibilita el uso de esta tecnología.
Resumo:
Trabajo para la enseñanza de las ecuaciones a alumnos de Educación Secundaria. El proyecto que se presenta puede ser llevado a cabo con software libre sobre gnulinex, y en él se ha empleado la hoja de cálculo de Open Office y un sistema de cálculo simbólico muPad. El artículo se estructura en 3 partes: una justificación de los cambios que supone la introducción de las nuevas tecnologías aplicadas a la enseñanza de las ecuaciones, una introducción para el alumnado y un guión para desarrollar el tema.