6 resultados para delay-line position sensitive detector
em Cochin University of Science
Resumo:
Photothermal effect refers to heating of a sample due to the absorption of electromagnetic radiation. Photothermal (PT) heat generation which is an example of energy conversion has in general three kinds of applications. 1. PT material probing 2. PT material processing and 3. PT material destruction. The temperatures involved increases from 1-. 3. Of the above three, PT material probing is the most important in making significant contribution to the field of science and technology. Photothermal material characterization relies on high sensitivity detection techniques to monitor the effects caused by PT material heating of a sample. Photothermal method is a powerful high sensitivity non-contact tool used for non-destructive thermal characterization of materials. The high sensitivity of the photothermal methods has led to its application for analysis of low absorbance samples. Laser calorimetry, photothermal radiometry, pyroelectric technique, photoacoustic technique, photothermal beam deflection technique, etc. come under the broad class ofphotothermal techniques. However the choice of a suitable technique depends upon the nature of the sample, purpose of measurement, nature of light source used, etc. The present investigations are done on polymer thin films employing photothermal beam deflection technique, for the successful determination of their thermal diffusivity. Here the sample is excited by a He-Ne laser (A = 6328...\ ) which acts as the pump beam. Due to the refractive index gradient established in the sample surface and in the adjacent coupling medium, another optical beam called probe beam (diode laser, A= 6500A ) when passed through this region experiences a deflection and is detected using a position sensitive detector and its output is fed to a lock-in amplifier from which the amplitude and phase of the deflection can be directly obtained. The amplitude and phase of the signal is suitably analysed for determining the thermal diffusivity.The production of polymer thin film samples has gained considerable attention for the past few years. Plasma polymerization is an inexpensive tool for fabricating organic thin films. It refers to formation of polymeric materials under the influence of plasma, which is generated by some kind of electric discharge. Here plasma of the monomer vapour is generated by employing radio frequency (MHz) techniques. Plasma polymerization technique results in homogeneous, highly adhesive, thermally stable, pinhole free, dielectric, highly branched and cross-linked polymer films. The possible linkage in the formation of the polymers is suggested by comparing the FTIR spectra of the monomer and the polymer.Near IR overtone investigations on some organic molecules using local mode model are also done. Higher vibrational overtones often provide spectral simplification and greater resolution of peaks corresponding to nonequivalent X-H bonds where X is typically C, N or O. Vibrational overtone spectroscopy of molecules containing X-H oscillators is now a well established tool for molecular investigations. Conformational and steric differences between bonds and structural inequivalence ofCH bonds (methyl, aryl, acetylenic, etc.) are resolvable in the higher overtone spectra. The local mode model in which the X-H oscillators are considered to be loosely coupled anharmonic oscillators has been widely used for the interpretation of overtone spectra. If we are exciting a single local oscillator from the vibrational ground state to the vibrational state v, then the transition energy of the local mode overtone is given by .:lE a......v = A v + B v2 • A plot of .:lE / v versus v will yield A, the local mode frequency as the intercept and B, the local mode diagonal anharmonicity as the slope. Here A - B gives the mechanical frequency XI of the oscillator and B = X2 is the anharmonicity of the bond. The local mode parameters XI and X2 vary for non-equivalent X-H bonds and are sensitive to the inter and intra molecular environment of the X-H oscillator.
Resumo:
Material synthesizing and characterization has been one of the major areas of scientific research for the past few decades. Various techniques have been suggested for the preparation and characterization of thin films and bulk samples according to the industrial and scientific applications. Material characterization implies the determination of the electrical, magnetic, optical or thermal properties of the material under study. Though it is possible to study all these properties of a material, we concentrate on the thermal and optical properties of certain polymers. The thermal properties are detennined using photothermal beam deflection technique and the optical properties are obtained from various spectroscopic analyses. In addition, thermal properties of a class of semiconducting compounds, copper delafossites, arc determined by photoacoustic technique.Photothermal technique is one of the most powerful tools for non-destructive characterization of materials. This forms a broad class of technique, which includes laser calorimetry, pyroelectric technique, photoacollstics, photothermal radiometric technique, photothermal beam deflection technique etc. However, the choice of a suitable technique depends upon the nature of sample and its environment, purpose of measurement, nature of light source used etc. The polynler samples under the present investigation are thermally thin and optically transparent at the excitation (pump beam) wavelength. Photothermal beam deflection technique is advantageous in that it can be used for the detennination of thermal diffusivity of samples irrespective of them being thermally thick or thennally thin and optically opaque or optically transparent. Hence of all the abovementioned techniques, photothemlal beam deflection technique is employed for the successful determination of thermal diffusivity of these polymer samples. However, the semi conducting samples studied are themlally thick and optically opaque and therefore, a much simpler photoacoustic technique is used for the thermal characterization.The production of polymer thin film samples has gained considerable attention for the past few years. Different techniques like plasma polymerization, electron bombardment, ultra violet irradiation and thermal evaporation can be used for the preparation of polymer thin films from their respective monomers. Among these, plasma polymerization or glow discharge polymerization has been widely lIsed for polymer thin fi Im preparation. At the earlier stages of the discovery, the plasma polymerization technique was not treated as a standard method for preparation of polymers. This method gained importance only when they were used to make special coatings on metals and began to be recognized as a technique for synthesizing polymers. Thc well-recognized concept of conventional polymerization is based on molecular processcs by which thc size of the molecule increases and rearrangemcnt of atoms within a molecule seldom occurs. However, polymer formation in plasma is recognized as an atomic process in contrast to the above molecular process. These films are pinhole free, highly branched and cross linked, heat resistant, exceptionally dielectric etc. The optical properties like the direct and indirect bandgaps, refractive indices etc of certain plasma polymerized thin films prepared are determined from the UV -VIS-NIR absorption and transmission spectra. The possible linkage in the formation of the polymers is suggested by comparing the FTIR spectra of the monomer and the polymer. The thermal diffusivity has been measured using the photothermal beam deflection technique as stated earlier. This technique measures the refractive index gradient established in the sample surface and in the adjacent coupling medium, by passing another optical beam (probe beam) through this region and hence the name probe beam deflection. The deflection is detected using a position sensitive detector and its output is fed to a lock-in-amplifIer from which the amplitude and phase of the deflection can be directly obtained. The amplitude and phase of the deflection signal is suitably analyzed for determining the thermal diffusivity.Another class of compounds under the present investigation is copper delafossites. These samples in the form of pellets are thermally thick and optically opaque. Thermal diffusivity of such semiconductors is investigated using the photoacoustic technique, which measures the pressure change using an elcctret microphone. The output of the microphone is fed to a lock-in-amplificr to obtain the amplitude and phase from which the thermal properties are obtained. The variation in thermal diffusivity with composition is studied.
Resumo:
Photothermal deflection technique was used for determining the laser damage threshold of polymer samples of teflon (PTFE) and nylon. The experiment was conducted using a Q-switched Nd-YAG laser operating at its fundamental wavelength (1-06μm, pulse width 10 nS FWHM) as irradiation source and a He-Ne laser as the probe beam, along with a position sensitive detector. The damage threshold values determined by photothermal deflection method were in good agreement with those determined by other methods.
Resumo:
A laser produced plasma from the multielement solid target YBa2Cu3O7 is generated using 1.06 μm, 9 ns pulses from a Q-switched Nd:YAG laser in air at atmospheric pressure. A time resolved analysis of the profile of the 4554.03 Å resonance line emission from Ba II at various laser power densities has been carried out. It has been found that the line has a profile which is strongly self-reversed. It is also observed that at laser power densities equal to or exceeding 1.6×1011 W cm−2, a third peak begins to develop at the centre of the self-reversed profile and this has been interpreted as due to the anisotropic resonance scattering (fluorescence). The number densities of singly ionized barium ions evaluated from the width of the resonance line as a function of time delay with respect to the beginning of the laser pulse give typical values of the order of 1019 cm−3. The higher ion concentrations existing at smaller time delays are seen to decrease rapidly. The Ba II ions in the ground state resonantly absorb the radiation and this absorption is maximum around 120 ns after the laser pulse.
Resumo:
The present study aims at surveying the coral lagoons of four islands viz. Kavarathi, Kalpeni, Kadmat and Agathi, which include quantitative survey of the major benthic forms using Line Intercept Transect (LIT) technique and hydrographical study of these lagoon waters The distribution of PHC in the lagoons has also been followed to understand, the effects of introduction of flat bottomed ferry boats to the islands.From a biological monitoring stand point for the assessment of manmade disturbance of the coral reefs, it IS highly essential to identify faunal assemblages which will contain 'flag-stones' specIes as indicators of such disturbances. Among the known faunal assemblages In coral reefs the most diverse groups of sensitive species belongs to bryozoan assemblage. Therefore, the most common species of bryozoans distributed along the atolls and reef flats were collected and described in this work Along with this, bryozoans associated with coral from other parts of Indian ocean have also been added so as to provide a comprehensive picture of the distribution of bryozoans in the coral reefs.
Resumo:
This paper presents a new approach to implement Reed-Muller Universal Logic Module (RM-ULM) networks with reduced delay and hardware for synthesizing logic functions given in Reed-Muller (RM) form. Replication of single control line RM-ULM is used as the only design unit for defining any logic function. An algorithm is proposed that does exhaustive branching to reduce the number of levels and modules required to implement any logic function in RM form. This approach attains a reduction in delay, and power over other implementations of functions having large number of variables.