5 resultados para Logic design.
em Cochin University of Science
Resumo:
Decimal multiplication is an integral part of financial, commercial, and internet-based computations. This paper presents a novel double digit decimal multiplication (DDDM) technique that performs 2 digit multiplications simultaneously in one clock cycle. This design offers low latency and high throughput. When multiplying two n-digit operands to produce a 2n-digit product, the design has a latency of (n / 2) 1 cycles. The paper presents area and delay comparisons for 7-digit, 16-digit, 34-digit double digit decimal multipliers on different families of Xilinx, Altera, Actel and Quick Logic FPGAs. The multipliers presented can be extended to support decimal floating-point multiplication for IEEE P754 standard
Resumo:
In recent years, reversible logic has emerged as one of the most important approaches for power optimization with its application in low power CMOS, nanotechnology and quantum computing. This research proposes quick addition of decimals (QAD) suitable for multi-digit BCD addition, using reversible conservative logic. The design makes use of reversible fault tolerant Fredkin gates only. The implementation strategy is to reduce the number of levels of delay there by increasing the speed, which is the most important factor for high speed circuits.
Resumo:
This paper presents a new approach to implement Reed-Muller Universal Logic Module (RM-ULM) networks with reduced delay and hardware for synthesizing logic functions given in Reed-Muller (RM) form. Replication of single control line RM-ULM is used as the only design unit for defining any logic function. An algorithm is proposed that does exhaustive branching to reduce the number of levels and modules required to implement any logic function in RM form. This approach attains a reduction in delay, and power over other implementations of functions having large number of variables.
Resumo:
This paper presents a new approach to the design of combinational digital circuits with multiplexers using Evolutionary techniques. Genetic Algorithm (GA) is used as the optimization tool. Several circuits are synthesized with this method and compared with two design techniques such as standard implementation of logic functions using multiplexers and implementation using Shannon’s decomposition technique using GA. With the proposed method complexity of the circuit and the associated delay can be reduced significantly
Resumo:
The main objective of this thesis is to design and develop spectral signature based chipless RFID tags Multiresonators are essential component of spectral signature based chipless tags. To enhance the data coding capacity in spectral signature based tags require large number of resonances in a limited bandwidth. The frequency of the resonators have to be close to each other. To achieve this condition, the quality factor of each resonance needs to be high. The thesis discusses about various types of multiresonators, their practical implementation and how they can be used in design. Encoding of data into spectral domain is another challenge in chipless tag design. Here, the technique used is the presence or absence encoding technique. The presence of a resonance is used to encode Logic 1 and absence of a speci c resonance is used to encode Logic 0. Di erent types of multiresonators such as open stub multiresonators, coupled bunch hairpin resonators and shorted slot ground ring resonator are proposed in this thesis.