5 resultados para Deontic logic
em Cochin University of Science
Resumo:
A sensitive method based on the principle of photothermal phenomena to realize optical logic gates is presented. A dual beam thermal lens method using low power cw lasers in a dye-doped polymer can be very effectively used as an alternate technique to perform the logical function such as NAND, AND and OR.
Resumo:
Reversibility plays a fundamental role when logic gates such as AND, OR, and XOR are not reversible. computations with minimal energy dissipation are considered. Hence, these gates dissipate heat and may reduce the life of In recent years, reversible logic has emerged as one of the most the circuit. So, reversible logic is in demand in power aware important approaches for power optimization with its circuits. application in low power CMOS, quantum computing and A reversible conventional BCD adder was proposed in using conventional reversible gates.
Resumo:
Decimal multiplication is an integral part of financial, commercial, and internet-based computations. This paper presents a novel double digit decimal multiplication (DDDM) technique that performs 2 digit multiplications simultaneously in one clock cycle. This design offers low latency and high throughput. When multiplying two n-digit operands to produce a 2n-digit product, the design has a latency of (n / 2) 1 cycles. The paper presents area and delay comparisons for 7-digit, 16-digit, 34-digit double digit decimal multipliers on different families of Xilinx, Altera, Actel and Quick Logic FPGAs. The multipliers presented can be extended to support decimal floating-point multiplication for IEEE P754 standard
Resumo:
In recent years, reversible logic has emerged as one of the most important approaches for power optimization with its application in low power CMOS, nanotechnology and quantum computing. This research proposes quick addition of decimals (QAD) suitable for multi-digit BCD addition, using reversible conservative logic. The design makes use of reversible fault tolerant Fredkin gates only. The implementation strategy is to reduce the number of levels of delay there by increasing the speed, which is the most important factor for high speed circuits.
Resumo:
This paper presents a new approach to implement Reed-Muller Universal Logic Module (RM-ULM) networks with reduced delay and hardware for synthesizing logic functions given in Reed-Muller (RM) form. Replication of single control line RM-ULM is used as the only design unit for defining any logic function. An algorithm is proposed that does exhaustive branching to reduce the number of levels and modules required to implement any logic function in RM form. This approach attains a reduction in delay, and power over other implementations of functions having large number of variables.