79 resultados para Sr doped lanthana


Relevância:

20.00% 20.00%

Publicador:

Resumo:

DC and AC electrical conductivity measurements in single crystals of diammonium hydrogen phosphate along the c axis show anomalous variations at 174, 246 and 416 K. The low-frequency dielectric constant also exhibits peaks exactly at these temperatures with a thermal hysteresis of 13 degrees C for the peak at 416 K. These specific features of the electrical properties are in agreement with earlier NMR second-moment data and can be identified with three distinct phase transitions that occur in the crystal. The electrical conductivity values have been found to increase linearly with impurity concentration in specimens doped with a specific amount of SO42- ions. The mechanisms of the phase transition and of the electrical conduction process are discussed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The length-dependent tuning of the fluorescence spectra of a dye doped polymer fiber is reported. The fiber is pumped sideways and the fluorescence is measured from one of the ends. The excitation of a finite length of dye doped fiber is done by a diode pumped solid state laser at a wavelength of 532 nm. The fluorescence emission is measured at various positions of the fiber starting from a position closer to the pumping region and then progressing toward the other end of the fiber. We observe that the optical loss coefficients for shorter and longer distances of propagation through the dye doped fiber are different. At longer distances of propagation, a decrease in optical loss coefficient is observed. The fluorescence peaks exhibit a redshift of 12 nm from 589 to 610 nm as the point of illumination progresses toward the detector end. This is attributed to the self-absorption and re-emission of the laser dye in the fiber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fabrication and characterization of a Rhodamine 6G-doped polymer optical fiber amplifier have been carried out. Two different schemes were employed to characterize the optical fiber: the stripe illumination technique to study the fiber as a gain medium and another technique to study its performance as an amplifier. We observed a spectral narrowing from 42 to 7 nm when the pump energy was increased to 6 mJ in the stripe illumination geometry. A gain of 18 dB was obtained in the amplifier configuration. The effects of pump power and dye concentration on the performance of the fiber as an amplifier were also studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An open cell photoacoustic configuration has been employed to evaluate the thermal diffusivity of pure InP as well as InP doped with sulphur and iron. Chopped optical radiation at 488 nm from an Ar-ion laser has been used to excite photoacoustic signals which been detected by a sensitive electret microphone. Thermal diffusivity value have been calculated from phase versus chopping frequency plots. Doped sample are found to show a reduced value for thermal diffusivity in comparison with intrinsically pure sample. The results have been interpreted in terms of the mechanisms of heat generation and transmission in semiconductors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we report the use of the dual beam thermal lens technique as a quantitative method to determine absolute fluorescence quantum efficiency and concentration quenching of fluorescence emission from rhodamine 6G doped Poly(methyl methacrylate) (PMMA), prepared with different concentrations of the dye. A comparison of the present data with that reported in the literature indicates that the observed variation of fluorescence quantum yield with respect to the dye concentration follows a similar profile as in the earlier reported observations on rhodamine 6G in solution. The photodegradation of the dye molecules under cw laser excitation is also studied using the present method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-photon excited (TPE) side illumination fluorescence studies in a Rh6G-RhB dye mixture doped polymer optical fiber (POF) and the effect of energy transfer on the attenuation coefficient is reported. The dye doped POF is pumped sideways using 800 nm, 70 fs laser pulses from a Ti:sapphire laser, and the TPE fluorescence emission is collected from the end of the fiber for different propagation distances. The fluorescence intensity of RhB doped POF is enhanced in the presence of Rh6G as a result of energy transfer from Rh6G to RhB. Because of the reabsorption and reemission process in dye molecules, an effective energy transfer is observed from the shorter wavelength part of the fluorescence spectrum to the longer wavelength part as the propagation distance is increased in dye doped POF. An energy transfer coefficient is found to be higher at shorter propagation distances compared to longer distances. A TPE fluorescence signal is used to characterize the optical attenuation coefficient in dye doped POF. The attenuation coefficient decreases at longer propagation distances due to the reabsorption and reemission process taking place within the dye doped fiber as the propagation distance is increased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The propagation characteristics of amplified spontaneous emission (ASE) through a rhodamine 6 G-doped polymethyl methacrylate freestanding film waveguide were studied. This was done by shifting the excitation stripe horizontally along a transversely pumped waveguide. By this method, we could tune the ASE wavelength. The maximum tunability thus obtained was ~18 nm with a pump stripe length of 6 mm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents in detail. the theoretical developments and calculations which are used for the simultaneous determination of thermal parameters, namely thermal diffusivity (a). thermal effusivity (e), thermal conductivity (K) and heat capacity (cr ) employing photopyroelectric technique. In our calculations. we have assumed that the pyroelectric detector is supported on a copper backing. so that there will be sufficient heat exchange between the heated pyroelectric detector and the backing so that the signal fluctuations are reduced to a minimum. Since the PPE signal depends on the properties of the detector that are also temperature dependent. a careful temperature calibration of the system need to be carried out. APPE cell has been fabricated for the measurements that can be used to measure the thermal properties of solid samples from ~ 90 K to ~ 350 K. The cell has been calibrated using standard samples and the accuracy of the technique is found to be of the order of± 1%.In this thesis, we have taken up work n photopyroelectric investigation of thermal parameters of ferroelectric crystals such as Glycine phosphite (NH3CH2COOH3P03), Triglycine sulfate and Thiourea as well as mixed valence perovskites samples such as Lead doped Lanthanum Manganate (Lal_xPb~Mn03) Calcium doped (Lal_xCaxMnOJ) and Nickel doped Lanthanum Stroncium Cobaltate (Lao~Sro5Ni,Col_x03).The three ferroelectric crystals are prepared by the slow evaporation technique and the mixed valence perovskites by solid state reaction technique.Mixed valence perovskites, with the general formula RI_xA~Mn03 (R = La. Nd or Pr and A = Ba, Ca, Sr or Pb) have been materials of intense experimental and theoretical studies over the past few years. These materials show . colossal magneloresis/ance' (CMR) in samples with 0.2 < x < 0.5 in such a doping region, resistivity exhibits a peak at T = T p' the metal - insulator transition temperature. The system exhibits metallic characteristics with d %T > Oabove Tp (wherep is the resistivity) and insulating characteristics with d % T < 0 above T p. Despite intensive investigations on the CMR phenomena and associated electrical properties. not much work has been done on the variation of thermal properties of these samples. We have been quite successful in finding out the nature of anomaly associated with thermal properties when the sample undergoes M-I transition.The ferroelectric crystal showing para-ferroelectric phase transitions - Glycine phosphite. Thiourea and Triglycine sulfate - are studied in detail in order to see how well the PPE technique enables one to measure the thermal parameters during phase transitions. It is seen that the phase transition gets clearly reflected in the variation of thermal parameters. The anisotropy in thermal transport along different crystallographic directions are explained in terms of the elastic anisotropy and lattice contribution to the thermal conductivity. Interesting new results have been obtained on the above samples and are presented in three different chapters of the thesis.In summary. we have carried investigations of the variations of the thermal parameters during phase transitions employing photopyroelectric technique. The results obtained on different systems are important not only in understanding the physics behind the transitions but also in establishing the potentiality of the PPE tool. The full potential of PPE technique for the investigation of optical and thermal properties of materials still remains to be taken advantage of by workers in this field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multimode laser emission is observed in a polymer optical fiber doped with a mixture of Rhodamine 6G (Rh 6G) and Rhodamine B (Rh B) dyes. Tuning of laser emission is achieved by using the mixture of dyes due to the energy transfer occurring from donor molecule (Rh 6G) to acceptor molecule (Rh B). The dye doped poly(methyl methacrylate)-based polymer optical fiber is pumped axially at one end of the fiber using a 532 nm pulsed laser beam from a Nd:YAG laser and the fluorescence emission is collected from the other end. At low pump energy levels, fluorescence emission is observed. When the energy is increased beyond a threshold value, laser emission occurs with a multimode structure. The optical feedback for the gain medium is provided by the cylindrical surface of the optical fiber, which acts as a cavity. This fact is confirmed by the mode spacing dependence on the diameter of the fiber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhodamine 6G and Rhodamine B dye mixture doped polymer optical fiber amplifier (POFA), which can operate in a broad wavelength region (60 nm), has been successfully fabricated and tested. Tunable operation of the amplifier over a broad wavelength region is achieved by mixing different ratios of the dyes. The dye doped POFA is pumped axially using 532 nm, 10 ns laser pulses from a frequency doubled Q-switched Nd: YAG laser and the signals are taken from an optical parametric oscillator. A maximum gain of 22.3 dB at 617 nm wavelength has been obtained for a 7 cm long dye mixture doped POFA. The effects of pump energy and length of the fiber on the performance of the fiber amplifier are also studied. There exists an optimum length for which the amplifier gain is at a maximum value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a laser-induced photoacoustic study on the photostability of laser dye Coumarin 540 doped in PMMA matrix and modified by the incorporation of low-molecular weight additives. The dependence of photostability of the dye on various experimental conditions, such as nature of solvents, incident optical power and dye concentration, is investigated in detail. The activation rates for the bleaching process are calculated for different concentrations and they suggest the possibility of two distinct mechanisms responsible for photodegradation. Further, analysis of the data confirms the linear dependence of photodegradation on the intensity of incident radiation. The role of different externally influencing parameters, such as wavelength and modulation frequency of incident radiation, is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photosensitivity of dye mixture-doped polymethyl methacrylate (PMMA) films are investigated as a function of laser power, concentration of the dyes, modulation frequency and the irradiation wavelength. Energy transfer from a donor molecule to an acceptor molecule affects the emission output of the dye mixture system. Photosensitivity is found to change with changes in donor–acceptor concentrations. PMMA samples doped with the dye mixture are found to be more photosensitive when the dyes are mixed in the same proportion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser‐induced damage and ablation thresholds of bulk superconducting samples of Bi2(SrCa)xCu3Oy(x=2, 2.2, 2.6, 2.8, 3) and Bi1.6 (Pb)xSr2Ca2Cu3 Oy (x=0, 0.1, 0.2, 0.3, 0.4) for irradiation with a 1.06 μm beam from a Nd‐YAG laser have been determined as a function of x by the pulsed photothermal deflection technique. The threshold values of power density for ablation as well as damage are found to increase with increasing values of x in both systems while in the Pb‐doped system the threshold values decrease above a specific value of x, coinciding with the point at which the Tc also begins to fall.  

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preparation of an appropriate optical-fiber preform is vital for the fabrication of graded-index polymer optical fibers (GIPOF), which are considered to be a good choice for providing inexpensive high bandwidth data links, for local area networks and telecommunication applications. Recent development of the interfacial gel polymerization technique has caused a dramatic reduction in the total attenuation in GIPOF, and this is one of the potential methods to prepare fiber preforms for the fabrication of dye-doped polymer-fiber amplifiers. In this paper, the preparation of a dye-doped graded-index poly(methyl methacrylate) (PMMA) rod by the interfacial gel polymerization method using a PMMA tube is reported. An organic compound of high-refractive index, viz., diphenyl phthalate (DPP), was used to obtain a graded-index distribution, and Rhodamine B (Rh B), was used to dope the PMMA rod. The refractive index profile of the rod was measured using an interferometric technique and the index exponent was estimated. The single pass gain of the rod was measured at a pump wavelength of 532 nm. The extent of doping of the Rh B in the preform was studied by axially exciting a thin slice of the rod with white light and measuring the spatial variation of the fluorescence intensity across the sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photoacoustic technique under heat transmission configuration is used to determine the effect of doping on both the thermal and transport properties of p- and n-type GaAs epitaxial layers grown on GaAs substrate by the molecular beam epitaxial method. Analysis of the data is made on the basis of the theoretical model of Rosencwaig and Gersho. Thermal and transport properties of the epitaxial layers are found by fitting the phase of the experimentally obtained photoacoustic signal with that of the theoretical model. It is observed that both the thermal and transport properties, i.e. thermal diffusivity, diffusion coefficient, surface recombination velocity and nonradiative recombination time, depend on the type of doping in the epitaxial layer. The results clearly show that the photoacoustic technique using heat transmission configuration is an excellent tool to study the thermal and transport properties of epitaxial layers under different doping conditions.