8 resultados para vegetation ecology
em Université de Montréal, Canada
Resumo:
Afin de mieux comprendre les effets des changements climatiques sur le pergélisol, il s’avère essentiel d’obtenir une meilleure connaissance des facteurs physiques et biologiques l’influençant. Même si plusieurs études font référence à l’influence de la végétation sur le pergélisol à grande échelle, l’effet de la végétation sur la profondeur du front de dégel du pergélisol à l’échelle de mètres, tel qu’exploré ici, est peu connu. L’étude s’est effectuée dans une forêt boréale tourbeuse dans la zone à pergélisol discontinu au sud des Territoires du Nord-Ouest (N61°18’, O121°18’). Nous avons comparé la profondeur de dégel aux mesures du couvert végétal suivantes : densité arborescente, couvert arbustif, indice de surface foliaire et présence de cryptogames (lichens et bryophytes). Nous avons trouvé qu’une plus grande densité arborescente menait à une moins grande profondeur de dégel tandis que le couvert arbustif (<50cm de hauteur) n’avait aucune influence. De plus, la profondeur de dégel dépendait de l’espèce des cryptogames et des microformes. Cette recherche quantifie l’influence de la végétation par strate sur la dégradation du pergélisol. Ultimement, les résultats pourront être pris en considération dans la mise en place des modèles, afin de valider les paramètres concernant la végétation, la dégradation du pergélisol et le flux du carbone.
Resumo:
Les infrastructures linéaires sont reconnues pour faciliter la dispersion de plantes indésirables dans leur emprise et les habitats adjacents. Toutefois, les impacts des emprises de lignes électriques ont été peu étudiés, particulièrement en milieux humides. Cette étude a examiné la végétation des emprises de lignes électriques et de leurs habitats adjacents dans 23 tourbières ombrotrophes (bogs) et 11 minérotrophes (fens). Dans les fens, la dispersion des espèces indésirables est facilitée le long des emprises et certaines espèces peuvent se propager à plus de 43 m dans les habitats adjacents. Au contraire, ces infrastructures ne semblent pas favoriser la dispersion des espèces indésirables dans les bogs puisque leur présence était limitée à la marge des sites et était négligeable dans les habitats tourbeux adjacents. Finalement, les caractéristiques intrinsèques des tourbières, telles leur degré de minérotrophie (bog ou fen) et leur structure végétale (tourbière ouverte, semi-forestière ou forestière) semblent grandement influencer l’envahissement.
Resumo:
Les rivières reçoivent de l'azote de leurs bassins versants et elles constituent les derniers sites de transformations des nutriments avant leur livraison aux zones côtières. Les transformations de l’azote inorganique dissous en azote gazeux sont très variables et peuvent avoir un impact à la fois sur l’eutrophisation des côtes et les émissions de gaz à effet de serre à l’échelle globale. Avec l’augmentation de la charge en azote d’origine anthropique vers les écosystèmes aquatiques, les modèles d’émissions de gaz à effet de serre prédisent une augmentation des émissions d’oxyde nitreux (N2O) dans les rivières. Les mesures directes de N2O dans le Lac Saint-Pierre (LSP), un élargissement du Fleuve Saint-Laurent (SLR) indiquent que bien qu’étant une source nette de N2O vers l'atmosphère, les flux de N2O dans LSP sont faibles comparés à ceux des autres grandes rivières et fleuves du monde. Les émissions varient saisonnièrement et inter-annuellement à cause des changements hydrologiques. Les ratios d’émissions N2O: N2 sont également influencés par l’hydrologie et de faibles ratios sont observés dans des conditions de débit d'eau plus élevée et de charge en N élevé. Dans une analyse effectuée sur plusieurs grandes rivières, la charge hydraulique des systèmes semble moduler la relation entre les flux de N2O annuels et les concentrations de nitrate dans les rivières. Dans SLR, des tapis de cyanobactéries colonisant les zones à faible concentration de nitrate sont une source nette d’azote grâce à leur capacité de fixer l’azote atmosphérique (N2). Étant donné que la fixation a lieu pendant le jour alors que les concentrations d'oxygène dans la colonne d'eau sont sursaturées, nous supposons que la fixation de l’azote est effectuée dans des micro-zones d’anoxie et/ou possiblement par des diazotrophes hétérotrophes. La fixation de N dans les tapis explique le remplacement de près de 33 % de la perte de N par dénitrification dans tout l'écosystème au cours de la période d'étude. Dans la portion du fleuve Hudson soumis à la marée, la dénitrification et la production de N2 est très variable selon le type de végétation. La dénitrification est associée à la dynamique en oxygène dissous particulière à chaque espèce durant la marée descendante. La production de N2 est extrêmement élevée dans les zones occupées par les plantes envahissantes à feuilles flottantes (Trapa natans) mais elle est négligeable dans la végétation indigène submergée. Une estimation de la production de N2 dans les lits de Trapa durant l’été, suggère que ces lits représentent une zone très active d’élimination de l’azote. En effet, les grands lits de Trapa ne représentent que 2,7% de la superficie totale de la portion de fleuve étudiée, mais ils éliminent entre 70 et 100% de l'azote total retenu dans cette section pendant les mois d'été et contribuent à près de 25% de l’élimination annuelle d’azote.
Resumo:
Thesis written in co-mentorship with Robert Michaud.
Resumo:
Ce mémoire visait à comprendre la dynamique temporelle et les patrons floristiques actuels de deux tourbières du sud-ouest du Québec (Small et Large Tea Field) et à identifier les facteurs anthropiques, environnementaux et spatiaux sous-jacents. Pour répondre aux objectifs, des inventaires floristiques anciens (1985) ont d’abord été comparés à des inventaires récents (2012) puis les patrons actuels et les facteurs sous-jacents ont été identifiés à l’aide d’analyses multi-variables. Mes résultats montrent d’abord qu’un boisement important s’est produit au cours des 30 dernières années dans les tourbières à l’étude, probablement en lien avec le drainage des terres agricoles avoisinantes, diminuant la hauteur de la nappe phréatique. Simultanément, les sphaignes ont proliférées dans le centre des sites s’expliquant par une recolonisation des secteurs ayant brûlés en 1983. D’autre part, mes analyses ont montré que les patrons floristiques actuels étaient surtout liés aux variables environnementales (pH et conductivité de l’eau, épaisseur des dépôts), bien que la variance associée aux activités humaines était aussi significative, notamment dans la tourbière Large (18.6%). Les patrons floristiques ainsi que les variables environnementales et anthropiques explicatives étaient aussi fortement structurés dans l’espace, notamment selon un gradient bordure-centre. Enfin, la diversité béta actuelle était surtout liée à la présence d’espèces non-tourbicoles ou exotiques. Globalement, cette étude a montré que les perturbations humaines passées et actuelles avaient un impact important sur la dynamique et la distribution de la végétation des tourbières Small et Large Tea Field.
Resumo:
Les milieux humides sont parmi les écosystèmes les plus menacés de la planète que ce soit par le drainage, l’exploitation des ressources naturelles ou les changements climatiques. Dans une optique de conservation, il est primordial de comprendre la part des facteurs autogènes et allogènes dans la dynamique temporelle de ces écosystèmes. Dans ce contexte, les objectifs de cette étude étaient de : 1) reconstituer la dynamique des communautés végétales de deux secteurs ombrotrophes du complexe de milieux humides des Tourbières-de-Lanoraie au cours des trois derniers millénaires et 2) déterminer l’impact des activités humaines depuis les 500 dernières années sur cette dynamique. Pour ce faire, une approche paléoécologique pluridisciplinaire a été utilisée. La dynamique végétale a été semblable dans les deux secteurs étudiés. Elle a d’abord été caractérisée par une ombrotrophication des systèmes tourbeux puis par une transformation graduelle d’une tourbière ombrotrophe ouverte, dominées par les sphaignes et les éricacées, vers des tourbières ombrotrophes forestières. L’ombrotrophication se serait amorcée peu avant le Petit-Âge glaciaire (1570-1850 AD), période associée à des conditions plus fraiches et plus sèches. Le développement de la phase forestière serait beaucoup plus récent (début 1900) et semble être associé à une période d’intensification de l’empreinte anthropique dans le paysage, notamment du drainage. Ce travail montre que les perturbations anthropiques constituent depuis le début du XXème siècle le moteur principal de la dynamique de la végétation des deux secteurs étudiés.
Resumo:
Les proliférations nuisibles de la cyanobactérie filamenteuse benthique Lyngbya wollei qui forme des tapis déposés sur les sédiments ont augmenté en fréquence au cours des 30 dernières années dans les rivières, lacs et sources de l'Amérique du Nord. Lyngbya wollei produit des neurotoxines et des composés organiques volatils (géosmin, 2-méthylisobornéol) qui ont des répercussions sur la santé publique de même que des impacts d'ordre socioéconomiques. Cette cyanobactérie est considérée comme un habitat et une source de nourriture de piètre qualité pour les invertébrés en raison de sa gaine robuste et de sa production de toxines. Les proliférations de L. wollei ont été observées pour la première fois en 2005 dans le fleuve Saint-Laurent (SLR; Québec, Canada). Nous avons jugé important de déterminer sa distribution sur un tronçon de 250 km afin d'élaborer des modèles prédictifs de sa présence et biomasse en se basant sur les caractéristiques chimiques et physiques de l'eau. Lyngbya wollei était généralement observé en aval de la confluence de petits tributaires qui irriguent des terres agricoles. L’écoulement d’eaux enrichies à travers la végétation submergée se traduisait par une diminution de la concentration d’azote inorganique dissous (DIN), alors que les concentrations de carbone organique dissous (DOC) et de phosphore total dissous (TDP) demeuraient élevées, produisant un faible rapport DIN :TDP. Selon nos modèles, DOC (effet positif), TP (effet négatif) et DIN :TDP (effet négatif) sont les variables les plus importantes pour expliquer la répartition de cette cyanobactérie. La probabilité que L. wollei soit présent dans le SLR a été prédite avec exactitude dans 72 % à 92 % des cas pour un ensemble de données indépendantes. Nous avons ensuite examiné si les conditions hydrodynamiques, c'est-à-dire le courant généré par les vagues et l'écoulement du fleuve, contrôlent les variations spatiales et temporelles de biomasse de L. wollei dans un grand système fluvial. Nous avons mesuré la biomasse de L. wollei ainsi que les variables chimiques, physiques et météorologiques durant trois ans à 10 sites le long d'un gradient d'exposition au courant et au vent dans un grand (148 km2) lac fluvial du SLR. L'exposition aux vagues et la vitesse du courant contrôlaient les variations de biomasses spatiales et temporelles. La biomasse augmentait de mai à novembre et persistait durant l'hiver. Les variations interannuelles étaient contrôlées par l'écoulement de la rivière (niveau d'eau) avec la crue printanière qui délogeait les tapis de l'année précédente. Les baisses du niveau d'eau et l'augmentation de l'intensité des tempêtes anticipées par les scénarios de changements climatiques pourraient accroître la superficie colonisée par L. wollei de même que son accumulation sur les berges. Par la suite, nous avons évalué l'importance relative de L. wollei par rapport aux macrophytes et aux épiphytes. Nous avons examiné l'influence structurante de l'échelle spatiale sur les variables environnementales et la biomasse de ces producteurs primaires (PP) benthiques. Nous avons testé si leur biomasse reflétait la nature des agrégats d'habitat basées sur l'écogéomorphologie ou plutôt le continuum fluvial. Pour répondre à ces deux questions, nous avons utilisé un design à 3 échelles spatiales dans le SLR: 1) le long d'un tronçon de 250 km, 2) entre les lacs fluviaux localisés dans ce tronçon, 3) à l'intérieur de chaque lac fluvial. Les facteurs environnementaux (conductivité et TP) et la structure spatiale expliquent 59% de la variation de biomasse des trois PP benthiques. Spécifiquement, les variations de biomasses étaient le mieux expliquées par la conductivité (+) pour les macrophytes, par le ratio DIN:TDP (+) et le coefficient d'extinction lumineuse (+) pour les épiphytes et par le DOC (+) et le NH4+ (-) pour L. wollei. La structure spatiale à l'intérieur des lacs fluviaux était la plus importante composante spatiale pour tous les PP benthiques, suggérant que les effets locaux tels que l'enrichissement par les tributaire plutôt que les gradients amont-aval déterminent la biomasse de PP benthiques. Donc, la dynamique des agrégats d'habitat représente un cadre général adéquat pour expliquer les variations spatiales et la grande variété de conditions environnementales supportant des organismes aquatiques dans les grands fleuves. Enfin, nous avons étudié le rôle écologique des tapis de L. wollei dans les écosystèmes aquatiques, en particulier comme source de nourriture et refuge pour l'amphipode Gammarus fasciatus. Nous avons offert aux amphipodes un choix entre des tapis de L. wollei et soit des chlorophytes filamenteuses ou un tapis artificiel de laine acrylique lors d'expériences en laboratoire. Nous avons aussi reconstitué la diète in situ des amphipodes à l'aide du mixing model (d13C et δ15N). Gammarus fasciatus choisissait le substrat offrant le meilleur refuge face à la lumière (Acrylique>Lyngbya=Rhizoclonium>Spirogyra). La présence de saxitoxines, la composition élémentaire des tissus et l'abondance des épiphytes n'ont eu aucun effet sur le choix de substrat. Lyngbya wollei et ses épiphytes constituaient 36 et 24 % de l'alimentation in situ de G. fasciatus alors que les chlorophytes, les macrophytes et les épiphytes associées représentaient une fraction moins importante de son alimentation. Les tapis de cyanobactéries benthiques devraient être considérés comme un bon refuge et une source de nourriture pour les petits invertébrés omnivores tels que les amphipodes.
Resumo:
Les milieux aquatiques en zone urbaine sont reconnus comme des îlots de biodiversité qui offrent de nombreux services écologiques. Dans cette étude, nous avons utilisé les macroinvertébrés comme bioindicateurs de la qualité écologique des étangs, petits lacs et marais de l’Île de Montréal. Les macroinvertébrés ont été récoltés durant l’été 2011 dans la zone littorale de 20 sites variant par leur urbanisation et leurs caractéristiques limnologiques. Nous avons évalué la variation dans la richesse en taxa, les indices de diversité et plusieurs métriques basées sur la composition taxonomique ou les traits fonctionnels. Nous avons déterminé la réponse des métriques aux changements dans l’urbanisation, l’aménagement et les conditions des plans d’eau. Notre étude montre que les étangs, marécages et petits lacs constituent des réserves importantes de biodiversité en zone urbaine. Les marécages naturels et les étangs et lacs permaments avaient une meilleure qualité écologique et supportaient des communautés de macroinvertébrés plus diverses et abondantes que les petits étangs temporaires aménagés. Le couvert de végétation aquatique, l’enrichissement en nutriments et en matière organique ainsi que la biomasse des algues expliquaient le plus de variation dans les macroinvertébrés. Les aménagements, la densité urbaine et la permanence de l’eau avaient aussi une bonne influence. Les métriques univariées avaient moins de potentiel que les métriques multivariées. Nous avons discuté les implications de notre étude pour le suivi environnemental de la biodiversité et la qualité écologique des milieux aquatiques en zone urbaine.