21 resultados para strong distributions
em Université de Montréal, Canada
Resumo:
In this paper, we study several tests for the equality of two unknown distributions. Two are based on empirical distribution functions, three others on nonparametric probability density estimates, and the last ones on differences between sample moments. We suggest controlling the size of such tests (under nonparametric assumptions) by using permutational versions of the tests jointly with the method of Monte Carlo tests properly adjusted to deal with discrete distributions. We also propose a combined test procedure, whose level is again perfectly controlled through the Monte Carlo test technique and has better power properties than the individual tests that are combined. Finally, in a simulation experiment, we show that the technique suggested provides perfect control of test size and that the new tests proposed can yield sizeable power improvements.
Resumo:
In this paper, we model the interactions between the distribution of male and female wages under the assumption that any change in the wage distribution of women must be offset by an opposite change in the wage distribution of men.
Resumo:
In this paper, we propose exact inference procedures for asset pricing models that can be formulated in the framework of a multivariate linear regression (CAPM), allowing for stable error distributions. The normality assumption on the distribution of stock returns is usually rejected in empirical studies, due to excess kurtosis and asymmetry. To model such data, we propose a comprehensive statistical approach which allows for alternative - possibly asymmetric - heavy tailed distributions without the use of large-sample approximations. The methods suggested are based on Monte Carlo test techniques. Goodness-of-fit tests are formally incorporated to ensure that the error distributions considered are empirically sustainable, from which exact confidence sets for the unknown tail area and asymmetry parameters of the stable error distribution are derived. Tests for the efficiency of the market portfolio (zero intercepts) which explicitly allow for the presence of (unknown) nuisance parameter in the stable error distribution are derived. The methods proposed are applied to monthly returns on 12 portfolios of the New York Stock Exchange over the period 1926-1995 (5 year subperiods). We find that stable possibly skewed distributions provide statistically significant improvement in goodness-of-fit and lead to fewer rejections of the efficiency hypothesis.
Resumo:
Rapport de recherche
Resumo:
In this paper, we model the interactions between the distribution of male and female wages under the assumption that any change in the wage distribution of women must be offset by an opposite change in the wage distribution of men.
Resumo:
La dernière décennie a connu un intérêt croissant pour les problèmes posés par les variables instrumentales faibles dans la littérature économétrique, c’est-à-dire les situations où les variables instrumentales sont faiblement corrélées avec la variable à instrumenter. En effet, il est bien connu que lorsque les instruments sont faibles, les distributions des statistiques de Student, de Wald, du ratio de vraisemblance et du multiplicateur de Lagrange ne sont plus standard et dépendent souvent de paramètres de nuisance. Plusieurs études empiriques portant notamment sur les modèles de rendements à l’éducation [Angrist et Krueger (1991, 1995), Angrist et al. (1999), Bound et al. (1995), Dufour et Taamouti (2007)] et d’évaluation des actifs financiers (C-CAPM) [Hansen et Singleton (1982,1983), Stock et Wright (2000)], où les variables instrumentales sont faiblement corrélées avec la variable à instrumenter, ont montré que l’utilisation de ces statistiques conduit souvent à des résultats peu fiables. Un remède à ce problème est l’utilisation de tests robustes à l’identification [Anderson et Rubin (1949), Moreira (2002), Kleibergen (2003), Dufour et Taamouti (2007)]. Cependant, il n’existe aucune littérature économétrique sur la qualité des procédures robustes à l’identification lorsque les instruments disponibles sont endogènes ou à la fois endogènes et faibles. Cela soulève la question de savoir ce qui arrive aux procédures d’inférence robustes à l’identification lorsque certaines variables instrumentales supposées exogènes ne le sont pas effectivement. Plus précisément, qu’arrive-t-il si une variable instrumentale invalide est ajoutée à un ensemble d’instruments valides? Ces procédures se comportent-elles différemment? Et si l’endogénéité des variables instrumentales pose des difficultés majeures à l’inférence statistique, peut-on proposer des procédures de tests qui sélectionnent les instruments lorsqu’ils sont à la fois forts et valides? Est-il possible de proposer les proédures de sélection d’instruments qui demeurent valides même en présence d’identification faible? Cette thèse se focalise sur les modèles structurels (modèles à équations simultanées) et apporte des réponses à ces questions à travers quatre essais. Le premier essai est publié dans Journal of Statistical Planning and Inference 138 (2008) 2649 – 2661. Dans cet essai, nous analysons les effets de l’endogénéité des instruments sur deux statistiques de test robustes à l’identification: la statistique d’Anderson et Rubin (AR, 1949) et la statistique de Kleibergen (K, 2003), avec ou sans instruments faibles. D’abord, lorsque le paramètre qui contrôle l’endogénéité des instruments est fixe (ne dépend pas de la taille de l’échantillon), nous montrons que toutes ces procédures sont en général convergentes contre la présence d’instruments invalides (c’est-à-dire détectent la présence d’instruments invalides) indépendamment de leur qualité (forts ou faibles). Nous décrivons aussi des cas où cette convergence peut ne pas tenir, mais la distribution asymptotique est modifiée d’une manière qui pourrait conduire à des distorsions de niveau même pour de grands échantillons. Ceci inclut, en particulier, les cas où l’estimateur des double moindres carrés demeure convergent, mais les tests sont asymptotiquement invalides. Ensuite, lorsque les instruments sont localement exogènes (c’est-à-dire le paramètre d’endogénéité converge vers zéro lorsque la taille de l’échantillon augmente), nous montrons que ces tests convergent vers des distributions chi-carré non centrées, que les instruments soient forts ou faibles. Nous caractérisons aussi les situations où le paramètre de non centralité est nul et la distribution asymptotique des statistiques demeure la même que dans le cas des instruments valides (malgré la présence des instruments invalides). Le deuxième essai étudie l’impact des instruments faibles sur les tests de spécification du type Durbin-Wu-Hausman (DWH) ainsi que le test de Revankar et Hartley (1973). Nous proposons une analyse en petit et grand échantillon de la distribution de ces tests sous l’hypothèse nulle (niveau) et l’alternative (puissance), incluant les cas où l’identification est déficiente ou faible (instruments faibles). Notre analyse en petit échantillon founit plusieurs perspectives ainsi que des extensions des précédentes procédures. En effet, la caractérisation de la distribution de ces statistiques en petit échantillon permet la construction des tests de Monte Carlo exacts pour l’exogénéité même avec les erreurs non Gaussiens. Nous montrons que ces tests sont typiquement robustes aux intruments faibles (le niveau est contrôlé). De plus, nous fournissons une caractérisation de la puissance des tests, qui exhibe clairement les facteurs qui déterminent la puissance. Nous montrons que les tests n’ont pas de puissance lorsque tous les instruments sont faibles [similaire à Guggenberger(2008)]. Cependant, la puissance existe tant qu’au moins un seul instruments est fort. La conclusion de Guggenberger (2008) concerne le cas où tous les instruments sont faibles (un cas d’intérêt mineur en pratique). Notre théorie asymptotique sous les hypothèses affaiblies confirme la théorie en échantillon fini. Par ailleurs, nous présentons une analyse de Monte Carlo indiquant que: (1) l’estimateur des moindres carrés ordinaires est plus efficace que celui des doubles moindres carrés lorsque les instruments sont faibles et l’endogenéité modérée [conclusion similaire à celle de Kiviet and Niemczyk (2007)]; (2) les estimateurs pré-test basés sur les tests d’exogenété ont une excellente performance par rapport aux doubles moindres carrés. Ceci suggère que la méthode des variables instrumentales ne devrait être appliquée que si l’on a la certitude d’avoir des instruments forts. Donc, les conclusions de Guggenberger (2008) sont mitigées et pourraient être trompeuses. Nous illustrons nos résultats théoriques à travers des expériences de simulation et deux applications empiriques: la relation entre le taux d’ouverture et la croissance économique et le problème bien connu du rendement à l’éducation. Le troisième essai étend le test d’exogénéité du type Wald proposé par Dufour (1987) aux cas où les erreurs de la régression ont une distribution non-normale. Nous proposons une nouvelle version du précédent test qui est valide même en présence d’erreurs non-Gaussiens. Contrairement aux procédures de test d’exogénéité usuelles (tests de Durbin-Wu-Hausman et de Rvankar- Hartley), le test de Wald permet de résoudre un problème courant dans les travaux empiriques qui consiste à tester l’exogénéité partielle d’un sous ensemble de variables. Nous proposons deux nouveaux estimateurs pré-test basés sur le test de Wald qui performent mieux (en terme d’erreur quadratique moyenne) que l’estimateur IV usuel lorsque les variables instrumentales sont faibles et l’endogénéité modérée. Nous montrons également que ce test peut servir de procédure de sélection de variables instrumentales. Nous illustrons les résultats théoriques par deux applications empiriques: le modèle bien connu d’équation du salaire [Angist et Krueger (1991, 1999)] et les rendements d’échelle [Nerlove (1963)]. Nos résultats suggèrent que l’éducation de la mère expliquerait le décrochage de son fils, que l’output est une variable endogène dans l’estimation du coût de la firme et que le prix du fuel en est un instrument valide pour l’output. Le quatrième essai résout deux problèmes très importants dans la littérature économétrique. D’abord, bien que le test de Wald initial ou étendu permette de construire les régions de confiance et de tester les restrictions linéaires sur les covariances, il suppose que les paramètres du modèle sont identifiés. Lorsque l’identification est faible (instruments faiblement corrélés avec la variable à instrumenter), ce test n’est en général plus valide. Cet essai développe une procédure d’inférence robuste à l’identification (instruments faibles) qui permet de construire des régions de confiance pour la matrices de covariances entre les erreurs de la régression et les variables explicatives (possiblement endogènes). Nous fournissons les expressions analytiques des régions de confiance et caractérisons les conditions nécessaires et suffisantes sous lesquelles ils sont bornés. La procédure proposée demeure valide même pour de petits échantillons et elle est aussi asymptotiquement robuste à l’hétéroscédasticité et l’autocorrélation des erreurs. Ensuite, les résultats sont utilisés pour développer les tests d’exogénéité partielle robustes à l’identification. Les simulations Monte Carlo indiquent que ces tests contrôlent le niveau et ont de la puissance même si les instruments sont faibles. Ceci nous permet de proposer une procédure valide de sélection de variables instrumentales même s’il y a un problème d’identification. La procédure de sélection des instruments est basée sur deux nouveaux estimateurs pré-test qui combinent l’estimateur IV usuel et les estimateurs IV partiels. Nos simulations montrent que: (1) tout comme l’estimateur des moindres carrés ordinaires, les estimateurs IV partiels sont plus efficaces que l’estimateur IV usuel lorsque les instruments sont faibles et l’endogénéité modérée; (2) les estimateurs pré-test ont globalement une excellente performance comparés à l’estimateur IV usuel. Nous illustrons nos résultats théoriques par deux applications empiriques: la relation entre le taux d’ouverture et la croissance économique et le modèle de rendements à l’éducation. Dans la première application, les études antérieures ont conclu que les instruments n’étaient pas trop faibles [Dufour et Taamouti (2007)] alors qu’ils le sont fortement dans la seconde [Bound (1995), Doko et Dufour (2009)]. Conformément à nos résultats théoriques, nous trouvons les régions de confiance non bornées pour la covariance dans le cas où les instruments sont assez faibles.
Resumo:
On présente une nouvelle approche de simulation pour la fonction de densité conjointe du surplus avant la ruine et du déficit au moment de la ruine, pour des modèles de risque déterminés par des subordinateurs de Lévy. Cette approche s'inspire de la décomposition "Ladder height" pour la probabilité de ruine dans le Modèle Classique. Ce modèle, déterminé par un processus de Poisson composé, est un cas particulier du modèle plus général déterminé par un subordinateur, pour lequel la décomposition "Ladder height" de la probabilité de ruine s'applique aussi. La Fonction de Pénalité Escomptée, encore appelée Fonction Gerber-Shiu (Fonction GS), a apporté une approche unificatrice dans l'étude des quantités liées à l'événement de la ruine été introduite. La probabilité de ruine et la fonction de densité conjointe du surplus avant la ruine et du déficit au moment de la ruine sont des cas particuliers de la Fonction GS. On retrouve, dans la littérature, des expressions pour exprimer ces deux quantités, mais elles sont difficilement exploitables de par leurs formes de séries infinies de convolutions sans formes analytiques fermées. Cependant, puisqu'elles sont dérivées de la Fonction GS, les expressions pour les deux quantités partagent une certaine ressemblance qui nous permet de nous inspirer de la décomposition "Ladder height" de la probabilité de ruine pour dériver une approche de simulation pour cette fonction de densité conjointe. On présente une introduction détaillée des modèles de risque que nous étudions dans ce mémoire et pour lesquels il est possible de réaliser la simulation. Afin de motiver ce travail, on introduit brièvement le vaste domaine des mesures de risque, afin d'en calculer quelques unes pour ces modèles de risque. Ce travail contribue à une meilleure compréhension du comportement des modèles de risques déterminés par des subordinateurs face à l'éventualité de la ruine, puisqu'il apporte un point de vue numérique absent de la littérature.
Resumo:
Dans le domaine des neurosciences computationnelles, l'hypothèse a été émise que le système visuel, depuis la rétine et jusqu'au cortex visuel primaire au moins, ajuste continuellement un modèle probabiliste avec des variables latentes, à son flux de perceptions. Ni le modèle exact, ni la méthode exacte utilisée pour l'ajustement ne sont connus, mais les algorithmes existants qui permettent l'ajustement de tels modèles ont besoin de faire une estimation conditionnelle des variables latentes. Cela nous peut nous aider à comprendre pourquoi le système visuel pourrait ajuster un tel modèle; si le modèle est approprié, ces estimé conditionnels peuvent aussi former une excellente représentation, qui permettent d'analyser le contenu sémantique des images perçues. Le travail présenté ici utilise la performance en classification d'images (discrimination entre des types d'objets communs) comme base pour comparer des modèles du système visuel, et des algorithmes pour ajuster ces modèles (vus comme des densités de probabilité) à des images. Cette thèse (a) montre que des modèles basés sur les cellules complexes de l'aire visuelle V1 généralisent mieux à partir d'exemples d'entraînement étiquetés que les réseaux de neurones conventionnels, dont les unités cachées sont plus semblables aux cellules simples de V1; (b) présente une nouvelle interprétation des modèles du système visuels basés sur des cellules complexes, comme distributions de probabilités, ainsi que de nouveaux algorithmes pour les ajuster à des données; et (c) montre que ces modèles forment des représentations qui sont meilleures pour la classification d'images, après avoir été entraînés comme des modèles de probabilités. Deux innovations techniques additionnelles, qui ont rendu ce travail possible, sont également décrites : un algorithme de recherche aléatoire pour sélectionner des hyper-paramètres, et un compilateur pour des expressions mathématiques matricielles, qui peut optimiser ces expressions pour processeur central (CPU) et graphique (GPU).
Resumo:
L’asymétrie de mise en charge (MEC) lors du passage assis à debout (PAD) chez les personnes hémiparétiques est une observation clinique connue mais peu expliquée. Ce projet visait donc le développement de connaissances sur les facteurs explicatifs de l’asymétrie de MEC chez cette clientèle en s’intéressant plus spécifiquement au lien entre la distribution des efforts aux genoux lors du PAD et l’asymétrie de MEC observée ainsi qu’à la perception de ces deux éléments lors de cette tâche. Ainsi, les objectifs généraux étaient de : 1) déterminer si l’exécution spontanée asymétrique du PAD des sujets hémiparétiques est expliquée par une distribution des efforts symétriques aux genoux en quantifiant ces efforts par le Taux d’utilisation musculaire électromyographique (TUMEMG) et, 2) déterminer si les individus hémiparétiques sont conscients des stratégies motrices qu’ils utilisent en évaluant leurs perceptions de MEC et d’efforts aux genoux durant le PAD. La première étude a évalué la capacité des personnes hémiparétiques à percevoir leur distribution de MEC aux membres inférieurs lors du PAD. Par rapport aux participants sains, leur distribution de MEC fut davantage asymétrique et leurs erreurs de perception plus élevées. La deuxième étude a quantifié la distribution des efforts aux genoux chez les sujets sains et hémiparétiques lors du PAD spontané. Les deux groupes ont montré une association entre leur distribution de MEC et leur distribution d’effort. Toutefois, la relation était plus faible chez les patients. Le classement des participants hémiparétiques en sous-groupes selon leur degré d’asymétrie de force maximale des extenseurs des genoux (faible, modéré, sévère) a révélé une similarité des efforts aux genoux parétique et non parétique chez le groupe ayant une atteinte sévère. La troisième étude a déterminé si la perception de la distribution des efforts aux genoux des sujets hémiparétiques était reliée à leur distribution réelle d’effort mesurée lors de PAD exécutés dans différentes positions de pieds. En plus d’être incapables de percevoir les changements de distribution d’effort induits par les différentes positions de pieds, leurs erreurs de perception d’effort furent plus élevées que celles de MEC. Par le biais du test fonctionnel assis-debout de cinq répétitions, la dernière étude a déterminé l’influence du nombre de répétitions du PAD sur les distributions de MEC et d’efforts aux genoux chez les sujets sains et hémiparétiques. Contrairement aux contrôles, les distributions des sujets hémiparétiques furent plus asymétriques à la première répétition du test fonctionnel que lors de l’exécution spontanée unique du PAD. En somme, les résultats de cette thèse ont démontré que la distribution des efforts aux genoux doit être considérée parmi les facteurs explicatifs de l’asymétrie de MEC des individus hémiparétiques lors du PAD et qu’il y a un besoin de mieux documenter la perception des personnes hémiparétiques lorsqu’elles exécutent des tâches fonctionnelles.
Resumo:
Les cellules sont capables de détecter les distributions spatiales de protéines et ainsi de migrer ou s’étendre dans la direction appropriée. Une compréhension de la réponse cellulaire aux modifications de ces distributions spatiales de protéines est essentielle pour l’avancement des connaissances dans plusieurs domaines de recherches tels que le développement, l’immunologie ou l’oncologie. Un exemple particulièrement complexe est le guidage d’axones se déroulant pendant le développement du système nerveux. Ce dernier nécessite la présence de plusieurs distributions de molécules de guidages étant attractives ou répulsives pour connecter correctement ce réseau complexe qu’est le système nerveux. Puisque plusieurs indices de guidage collaborent, il est particulièrement difficile d’identifier la contribution individuelle ou la voie de signalisation qui est déclenchée in vivo, il est donc nécessaire d’utiliser des méthodes pour reproduire ces distributions de protéines in vitro. Plusieurs méthodes existent pour produire des gradients de protéines solubles ou liées aux substrats. Quelques méthodes pour produire des gradients solubles sont déjà couramment utilisées dans plusieurs laboratoires, mais elles limitent l’étude aux distributions de protéines qui sont normalement sécrétées in vivo. Les méthodes permettant de produire des distributions liées au substrat sont particulièrement complexes, ce qui restreint leur utilisation à quelques laboratoires. Premièrement, nous présentons une méthode simple qui exploite le photoblanchiment de molécules fluorescentes pour créer des motifs de protéines liées au substrat : Laser-assisted protein adsorption by photobleaching (LAPAP). Cette méthode permet de produire des motifs de protéines complexes d’une résolution micrométrique et d’une grande portée dynamique. Une caractérisation de la technique a été faite et en tant que preuve de fonctionnalité, des axones de neurones du ganglion spinal ont été guidés sur des gradients d’un peptide provenant de la laminine. Deuxièmement, LAPAP a été amélioré de manière à pouvoir fabriquer des motifs avec plusieurs composantes grâce à l’utilisation de lasers à différentes longueurs d’onde et d’anticorps conjugués à des fluorophores correspondants à ces longueurs d’onde. De plus, pour accélérer et simplifier le processus de fabrication, nous avons développé LAPAP à illumination à champ large qui utilise un modulateur spatial de lumière, une diode électroluminescente et un microscope standard pour imprimer directement un motif de protéines. Cette méthode est particulièrement simple comparativement à la version originale de LAPAP puisqu’elle n’implique pas le contrôle de la puissance laser et de platines motorisées, mais seulement d’envoyer l’image du motif désiré au modulateur spatial. Finalement, nous avons utilisé LAPAP pour démontrer que notre technique peut être utilisée dans des analyses de haut contenu pour quantifier les changements morphologiques résultant de la croissance neuronale sur des gradients de protéines de guidage. Nous avons produit des milliers de gradients de laminin-1 ayant différentes pentes et analysé les variations au niveau du guidage de neurites provenant d’une lignée cellulaire neuronale (RGC-5). Un algorithme pour analyser les images des cellules sur les gradients a été développé pour détecter chaque cellule et quantifier la position du centroïde du soma ainsi que les angles d’initiation, final et de braquage de chaque neurite. Ces données ont démontré que les gradients de laminine influencent l’angle d’initiation des neurites des RGC-5, mais n’influencent pas leur braquage. Nous croyons que les résultats présentés dans cette thèse faciliteront l’utilisation de motifs de protéines liées au substrat dans les laboratoires des sciences de la vie, puisque LAPAP peut être effectué à l’aide d’un microscope confocal ou d’un microscope standard légèrement modifié. Cela pourrait contribuer à l’augmentation du nombre de laboratoires travaillant sur le guidage avec des gradients liés au substrat afin d’atteindre la masse critique nécessaire à des percées majeures en neuroscience.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal