95 resultados para inférence exacte

em Université de Montréal, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is well known that standard asymptotic theory is not valid or is extremely unreliable in models with identification problems or weak instruments [Dufour (1997, Econometrica), Staiger and Stock (1997, Econometrica), Wang and Zivot (1998, Econometrica), Stock and Wright (2000, Econometrica), Dufour and Jasiak (2001, International Economic Review)]. One possible way out consists here in using a variant of the Anderson-Rubin (1949, Ann. Math. Stat.) procedure. The latter, however, allows one to build exact tests and confidence sets only for the full vector of the coefficients of the endogenous explanatory variables in a structural equation, which in general does not allow for individual coefficients. This problem may in principle be overcome by using projection techniques [Dufour (1997, Econometrica), Dufour and Jasiak (2001, International Economic Review)]. AR-types are emphasized because they are robust to both weak instruments and instrument exclusion. However, these techniques can be implemented only by using costly numerical techniques. In this paper, we provide a complete analytic solution to the problem of building projection-based confidence sets from Anderson-Rubin-type confidence sets. The latter involves the geometric properties of “quadrics” and can be viewed as an extension of usual confidence intervals and ellipsoids. Only least squares techniques are required for building the confidence intervals. We also study by simulation how “conservative” projection-based confidence sets are. Finally, we illustrate the methods proposed by applying them to three different examples: the relationship between trade and growth in a cross-section of countries, returns to education, and a study of production functions in the U.S. economy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We discuss statistical inference problems associated with identification and testability in econometrics, and we emphasize the common nature of the two issues. After reviewing the relevant statistical notions, we consider in turn inference in nonparametric models and recent developments on weakly identified models (or weak instruments). We point out that many hypotheses, for which test procedures are commonly proposed, are not testable at all, while some frequently used econometric methods are fundamentally inappropriate for the models considered. Such situations lead to ill-defined statistical problems and are often associated with a misguided use of asymptotic distributional results. Concerning nonparametric hypotheses, we discuss three basic problems for which such difficulties occur: (1) testing a mean (or a moment) under (too) weak distributional assumptions; (2) inference under heteroskedasticity of unknown form; (3) inference in dynamic models with an unlimited number of parameters. Concerning weakly identified models, we stress that valid inference should be based on proper pivotal functions —a condition not satisfied by standard Wald-type methods based on standard errors — and we discuss recent developments in this field, mainly from the viewpoint of building valid tests and confidence sets. The techniques discussed include alternative proposed statistics, bounds, projection, split-sampling, conditioning, Monte Carlo tests. The possibility of deriving a finite-sample distributional theory, robustness to the presence of weak instruments, and robustness to the specification of a model for endogenous explanatory variables are stressed as important criteria assessing alternative procedures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapport de recherche

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the context of multivariate linear regression (MLR) models, it is well known that commonly employed asymptotic test criteria are seriously biased towards overrejection. In this paper, we propose a general method for constructing exact tests of possibly nonlinear hypotheses on the coefficients of MLR systems. For the case of uniform linear hypotheses, we present exact distributional invariance results concerning several standard test criteria. These include Wilks' likelihood ratio (LR) criterion as well as trace and maximum root criteria. The normality assumption is not necessary for most of the results to hold. Implications for inference are two-fold. First, invariance to nuisance parameters entails that the technique of Monte Carlo tests can be applied on all these statistics to obtain exact tests of uniform linear hypotheses. Second, the invariance property of the latter statistic is exploited to derive general nuisance-parameter-free bounds on the distribution of the LR statistic for arbitrary hypotheses. Even though it may be difficult to compute these bounds analytically, they can easily be simulated, hence yielding exact bounds Monte Carlo tests. Illustrative simulation experiments show that the bounds are sufficiently tight to provide conclusive results with a high probability. Our findings illustrate the value of the bounds as a tool to be used in conjunction with more traditional simulation-based test methods (e.g., the parametric bootstrap) which may be applied when the bounds are not conclusive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose finite sample tests and confidence sets for models with unobserved and generated regressors as well as various models estimated by instrumental variables methods. The validity of the procedures is unaffected by the presence of identification problems or \"weak instruments\", so no detection of such problems is required. We study two distinct approaches for various models considered by Pagan (1984). The first one is an instrument substitution method which generalizes an approach proposed by Anderson and Rubin (1949) and Fuller (1987) for different (although related) problems, while the second one is based on splitting the sample. The instrument substitution method uses the instruments directly, instead of generated regressors, in order to test hypotheses about the \"structural parameters\" of interest and build confidence sets. The second approach relies on \"generated regressors\", which allows a gain in degrees of freedom, and a sample split technique. For inference about general possibly nonlinear transformations of model parameters, projection techniques are proposed. A distributional theory is obtained under the assumptions of Gaussian errors and strictly exogenous regressors. We show that the various tests and confidence sets proposed are (locally) \"asymptotically valid\" under much weaker assumptions. The properties of the tests proposed are examined in simulation experiments. In general, they outperform the usual asymptotic inference methods in terms of both reliability and power. Finally, the techniques suggested are applied to a model of Tobin’s q and to a model of academic performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'imputation est souvent utilisée dans les enquêtes pour traiter la non-réponse partielle. Il est bien connu que traiter les valeurs imputées comme des valeurs observées entraîne une sous-estimation importante de la variance des estimateurs ponctuels. Pour remédier à ce problème, plusieurs méthodes d'estimation de la variance ont été proposées dans la littérature, dont des méthodes adaptées de rééchantillonnage telles que le Bootstrap et le Jackknife. Nous définissons le concept de double-robustesse pour l'estimation ponctuelle et de variance sous l'approche par modèle de non-réponse et l'approche par modèle d'imputation. Nous mettons l'emphase sur l'estimation de la variance à l'aide du Jackknife qui est souvent utilisé dans la pratique. Nous étudions les propriétés de différents estimateurs de la variance à l'aide du Jackknife pour l'imputation par la régression déterministe ainsi qu'aléatoire. Nous nous penchons d'abord sur le cas de l'échantillon aléatoire simple. Les cas de l'échantillonnage stratifié et à probabilités inégales seront aussi étudiés. Une étude de simulation compare plusieurs méthodes d'estimation de variance à l'aide du Jackknife en terme de biais et de stabilité relative quand la fraction de sondage n'est pas négligeable. Finalement, nous établissons la normalité asymptotique des estimateurs imputés pour l'imputation par régression déterministe et aléatoire.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectifs. L’objectif de ce mémoire est de parfaire nos connaissances quant à l’effet des actions policières sur les collisions routières au Québec. Ultimement, ce mémoire permettra d’identifier les conditions nécessaires pour que l’action policière influe sur les comportements des automobilistes. Pour se faire, deux études de cas sont employées. Dans un premier temps, nous évaluons l’effet d’un relâchement d’environ 60 % dans l’émission de constats d’infraction par les policiers de la ville de Québec sur les collisions avec blessures. Dans cet article, nous distinguons également les effets respectifs des constats d’infraction, des interceptions policières sans constat et des médias. Dans un second temps, nous évaluons l’impact d’une stratégie de sécurité routière mise en place conjointement par l’Association des directeurs de police du Québec (ADPQ) et la Société de l’assurance automobile du Québec (SAAQ). Dans les deux cas, un changement important est survenu dans l’émission de constats d’infraction émis en vertu du Code de la sécurité routière (CSR). Méthodologie. Afin d’évaluer l’effet de ces deux stratégies, nous avons agrégé les données sur les collisions et infractions au CSR sur une base mensuelle. Ces données proviennent principalement des rapports de collisions et des constats d’infraction remplis par les policiers et transmis à la SAAQ. Dans l’ensemble, nous avons utilisé un devis quasi-expérimental, soit celui des séries chronologiques interrompues. Résultats. Les résultats des deux articles démontrent que les policiers sont des acteurs clés en matière de sécurité routière. Les collisions avec blessures sont affectées par les fluctuations de leurs activités. La première série d’analyses établit qu’un relâchement d’environ 60 % dans le nombre de constats émis par les policiers se traduit par une hausse d’environ 10 % des collisions avec blessures, ce qui correspond à 15 collisions avec blessures supplémentaires par mois sur le territoire du Service de police de la ville de Québec. De plus, nos résultats montrent qu’une interception policière suivie d’un avertissement verbal n’est pas suffisante pour prévenir les collisions. De même, l’effet observé n’est pas attribuable aux médias. La deuxième série d’analyse montre que la stratégie conjointe de l’ADPQ et de la SAAQ, caractérisée par une hausse des constats émis et des campagnes médiatiques, fut suivie de baisses variant entre 14 et 36 % des collisions avec blessures graves. Interprétation. Les résultats démontrent que les actions policières ont une influence sur le bilan routier. Par contre, avant d’influer sur le comportement des automobilistes, certaines conditions doivent être respectées. Premièrement, l’intensité des contrôles policiers doit être suffisamment modifiée par rapport à son niveau initial. Deuxièmement, que ce soit une hausse ou une baisse, ce niveau doit être maintenu sur une période relativement longue (entre 12 et 24 mois environ) pour que les automobilistes soient exposés au message pénal et qu’ils considèrent ce changement dans le niveau de répression comme étant crédible. Troisièmement, l’émission de constats est un élément clé; la simple présence policière n’est pas suffisante pour prévenir les collisions. Enfin, les campagnes de sensibilisation semblent importantes, mais d’autres études sont nécessaires pour mieux apprécier leur rôle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’explosion du nombre de séquences permet à la phylogénomique, c’est-à-dire l’étude des liens de parenté entre espèces à partir de grands alignements multi-gènes, de prendre son essor. C’est incontestablement un moyen de pallier aux erreurs stochastiques des phylogénies simple gène, mais de nombreux problèmes demeurent malgré les progrès réalisés dans la modélisation du processus évolutif. Dans cette thèse, nous nous attachons à caractériser certains aspects du mauvais ajustement du modèle aux données, et à étudier leur impact sur l’exactitude de l’inférence. Contrairement à l’hétérotachie, la variation au cours du temps du processus de substitution en acides aminés a reçu peu d’attention jusqu’alors. Non seulement nous montrons que cette hétérogénéité est largement répandue chez les animaux, mais aussi que son existence peut nuire à la qualité de l’inférence phylogénomique. Ainsi en l’absence d’un modèle adéquat, la suppression des colonnes hétérogènes, mal gérées par le modèle, peut faire disparaître un artéfact de reconstruction. Dans un cadre phylogénomique, les techniques de séquençage utilisées impliquent souvent que tous les gènes ne sont pas présents pour toutes les espèces. La controverse sur l’impact de la quantité de cellules vides a récemment été réactualisée, mais la majorité des études sur les données manquantes sont faites sur de petits jeux de séquences simulées. Nous nous sommes donc intéressés à quantifier cet impact dans le cas d’un large alignement de données réelles. Pour un taux raisonnable de données manquantes, il appert que l’incomplétude de l’alignement affecte moins l’exactitude de l’inférence que le choix du modèle. Au contraire, l’ajout d’une séquence incomplète mais qui casse une longue branche peut restaurer, au moins partiellement, une phylogénie erronée. Comme les violations de modèle constituent toujours la limitation majeure dans l’exactitude de l’inférence phylogénétique, l’amélioration de l’échantillonnage des espèces et des gènes reste une alternative utile en l’absence d’un modèle adéquat. Nous avons donc développé un logiciel de sélection de séquences qui construit des jeux de données reproductibles, en se basant sur la quantité de données présentes, la vitesse d’évolution et les biais de composition. Lors de cette étude nous avons montré que l’expertise humaine apporte pour l’instant encore un savoir incontournable. Les différentes analyses réalisées pour cette thèse concluent à l’importance primordiale du modèle évolutif.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal