16 resultados para Symmetric distributions

em Université de Montréal, Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the problem of testing whether the observations X1, ..., Xn of a time series are independent with unspecified (possibly nonidentical) distributions symmetric about a common known median. Various bounds on the distributions of serial correlation coefficients are proposed: exponential bounds, Eaton-type bounds, Chebyshev bounds and Berry-Esséen-Zolotarev bounds. The bounds are exact in finite samples, distribution-free and easy to compute. The performance of the bounds is evaluated and compared with traditional serial dependence tests in a simulation experiment. The procedures proposed are applied to U.S. data on interest rates (commercial paper rate).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we study several tests for the equality of two unknown distributions. Two are based on empirical distribution functions, three others on nonparametric probability density estimates, and the last ones on differences between sample moments. We suggest controlling the size of such tests (under nonparametric assumptions) by using permutational versions of the tests jointly with the method of Monte Carlo tests properly adjusted to deal with discrete distributions. We also propose a combined test procedure, whose level is again perfectly controlled through the Monte Carlo test technique and has better power properties than the individual tests that are combined. Finally, in a simulation experiment, we show that the technique suggested provides perfect control of test size and that the new tests proposed can yield sizeable power improvements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we model the interactions between the distribution of male and female wages under the assumption that any change in the wage distribution of women must be offset by an opposite change in the wage distribution of men.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose exact inference procedures for asset pricing models that can be formulated in the framework of a multivariate linear regression (CAPM), allowing for stable error distributions. The normality assumption on the distribution of stock returns is usually rejected in empirical studies, due to excess kurtosis and asymmetry. To model such data, we propose a comprehensive statistical approach which allows for alternative - possibly asymmetric - heavy tailed distributions without the use of large-sample approximations. The methods suggested are based on Monte Carlo test techniques. Goodness-of-fit tests are formally incorporated to ensure that the error distributions considered are empirically sustainable, from which exact confidence sets for the unknown tail area and asymmetry parameters of the stable error distribution are derived. Tests for the efficiency of the market portfolio (zero intercepts) which explicitly allow for the presence of (unknown) nuisance parameter in the stable error distribution are derived. The methods proposed are applied to monthly returns on 12 portfolios of the New York Stock Exchange over the period 1926-1995 (5 year subperiods). We find that stable possibly skewed distributions provide statistically significant improvement in goodness-of-fit and lead to fewer rejections of the efficiency hypothesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapport de recherche

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we model the interactions between the distribution of male and female wages under the assumption that any change in the wage distribution of women must be offset by an opposite change in the wage distribution of men.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On présente une nouvelle approche de simulation pour la fonction de densité conjointe du surplus avant la ruine et du déficit au moment de la ruine, pour des modèles de risque déterminés par des subordinateurs de Lévy. Cette approche s'inspire de la décomposition "Ladder height" pour la probabilité de ruine dans le Modèle Classique. Ce modèle, déterminé par un processus de Poisson composé, est un cas particulier du modèle plus général déterminé par un subordinateur, pour lequel la décomposition "Ladder height" de la probabilité de ruine s'applique aussi. La Fonction de Pénalité Escomptée, encore appelée Fonction Gerber-Shiu (Fonction GS), a apporté une approche unificatrice dans l'étude des quantités liées à l'événement de la ruine été introduite. La probabilité de ruine et la fonction de densité conjointe du surplus avant la ruine et du déficit au moment de la ruine sont des cas particuliers de la Fonction GS. On retrouve, dans la littérature, des expressions pour exprimer ces deux quantités, mais elles sont difficilement exploitables de par leurs formes de séries infinies de convolutions sans formes analytiques fermées. Cependant, puisqu'elles sont dérivées de la Fonction GS, les expressions pour les deux quantités partagent une certaine ressemblance qui nous permet de nous inspirer de la décomposition "Ladder height" de la probabilité de ruine pour dériver une approche de simulation pour cette fonction de densité conjointe. On présente une introduction détaillée des modèles de risque que nous étudions dans ce mémoire et pour lesquels il est possible de réaliser la simulation. Afin de motiver ce travail, on introduit brièvement le vaste domaine des mesures de risque, afin d'en calculer quelques unes pour ces modèles de risque. Ce travail contribue à une meilleure compréhension du comportement des modèles de risques déterminés par des subordinateurs face à l'éventualité de la ruine, puisqu'il apporte un point de vue numérique absent de la littérature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les cellules sont capables de détecter les distributions spatiales de protéines et ainsi de migrer ou s’étendre dans la direction appropriée. Une compréhension de la réponse cellulaire aux modifications de ces distributions spatiales de protéines est essentielle pour l’avancement des connaissances dans plusieurs domaines de recherches tels que le développement, l’immunologie ou l’oncologie. Un exemple particulièrement complexe est le guidage d’axones se déroulant pendant le développement du système nerveux. Ce dernier nécessite la présence de plusieurs distributions de molécules de guidages étant attractives ou répulsives pour connecter correctement ce réseau complexe qu’est le système nerveux. Puisque plusieurs indices de guidage collaborent, il est particulièrement difficile d’identifier la contribution individuelle ou la voie de signalisation qui est déclenchée in vivo, il est donc nécessaire d’utiliser des méthodes pour reproduire ces distributions de protéines in vitro. Plusieurs méthodes existent pour produire des gradients de protéines solubles ou liées aux substrats. Quelques méthodes pour produire des gradients solubles sont déjà couramment utilisées dans plusieurs laboratoires, mais elles limitent l’étude aux distributions de protéines qui sont normalement sécrétées in vivo. Les méthodes permettant de produire des distributions liées au substrat sont particulièrement complexes, ce qui restreint leur utilisation à quelques laboratoires. Premièrement, nous présentons une méthode simple qui exploite le photoblanchiment de molécules fluorescentes pour créer des motifs de protéines liées au substrat : Laser-assisted protein adsorption by photobleaching (LAPAP). Cette méthode permet de produire des motifs de protéines complexes d’une résolution micrométrique et d’une grande portée dynamique. Une caractérisation de la technique a été faite et en tant que preuve de fonctionnalité, des axones de neurones du ganglion spinal ont été guidés sur des gradients d’un peptide provenant de la laminine. Deuxièmement, LAPAP a été amélioré de manière à pouvoir fabriquer des motifs avec plusieurs composantes grâce à l’utilisation de lasers à différentes longueurs d’onde et d’anticorps conjugués à des fluorophores correspondants à ces longueurs d’onde. De plus, pour accélérer et simplifier le processus de fabrication, nous avons développé LAPAP à illumination à champ large qui utilise un modulateur spatial de lumière, une diode électroluminescente et un microscope standard pour imprimer directement un motif de protéines. Cette méthode est particulièrement simple comparativement à la version originale de LAPAP puisqu’elle n’implique pas le contrôle de la puissance laser et de platines motorisées, mais seulement d’envoyer l’image du motif désiré au modulateur spatial. Finalement, nous avons utilisé LAPAP pour démontrer que notre technique peut être utilisée dans des analyses de haut contenu pour quantifier les changements morphologiques résultant de la croissance neuronale sur des gradients de protéines de guidage. Nous avons produit des milliers de gradients de laminin-1 ayant différentes pentes et analysé les variations au niveau du guidage de neurites provenant d’une lignée cellulaire neuronale (RGC-5). Un algorithme pour analyser les images des cellules sur les gradients a été développé pour détecter chaque cellule et quantifier la position du centroïde du soma ainsi que les angles d’initiation, final et de braquage de chaque neurite. Ces données ont démontré que les gradients de laminine influencent l’angle d’initiation des neurites des RGC-5, mais n’influencent pas leur braquage. Nous croyons que les résultats présentés dans cette thèse faciliteront l’utilisation de motifs de protéines liées au substrat dans les laboratoires des sciences de la vie, puisque LAPAP peut être effectué à l’aide d’un microscope confocal ou d’un microscope standard légèrement modifié. Cela pourrait contribuer à l’augmentation du nombre de laboratoires travaillant sur le guidage avec des gradients liés au substrat afin d’atteindre la masse critique nécessaire à des percées majeures en neuroscience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nous y introduisons une nouvelle classe de distributions bivariées de type Marshall-Olkin, la distribution Erlang bivariée. La transformée de Laplace, les moments et les densités conditionnelles y sont obtenus. Les applications potentielles en assurance-vie et en finance sont prises en considération. Les estimateurs du maximum de vraisemblance des paramètres sont calculés par l'algorithme Espérance-Maximisation. Ensuite, notre projet de recherche est consacré à l'étude des processus de risque multivariés, qui peuvent être utiles dans l'étude des problèmes de la ruine des compagnies d'assurance avec des classes dépendantes. Nous appliquons les résultats de la théorie des processus de Markov déterministes par morceaux afin d'obtenir les martingales exponentielles, nécessaires pour établir des bornes supérieures calculables pour la probabilité de ruine, dont les expressions sont intraitables.