13 resultados para Machine to Machine
em Université de Montréal, Canada
Resumo:
Dans ce mémoire, nous examinons certaines propriétés des représentations distribuées de mots et nous proposons une technique pour élargir le vocabulaire des systèmes de traduction automatique neurale. En premier lieu, nous considérons un problème de résolution d'analogies bien connu et examinons l'effet de poids adaptés à la position, le choix de la fonction de combinaison et l'impact de l'apprentissage supervisé. Nous enchaînons en montrant que des représentations distribuées simples basées sur la traduction peuvent atteindre ou dépasser l'état de l'art sur le test de détection de synonymes TOEFL et sur le récent étalon-or SimLex-999. Finalament, motivé par d'impressionnants résultats obtenus avec des représentations distribuées issues de systèmes de traduction neurale à petit vocabulaire (30 000 mots), nous présentons une approche compatible à l'utilisation de cartes graphiques pour augmenter la taille du vocabulaire par plus d'un ordre de magnitude. Bien qu'originalement développée seulement pour obtenir les représentations distribuées, nous montrons que cette technique fonctionne plutôt bien sur des tâches de traduction, en particulier de l'anglais vers le français (WMT'14).
Resumo:
We introduce a procedure to infer the repeated-game strategies that generate actions in experimental choice data. We apply the technique to set of experiments where human subjects play a repeated Prisoner's Dilemma. The technique suggests that two types of strategies underly the data.
Resumo:
Cette thèse envisage un ensemble de méthodes permettant aux algorithmes d'apprentissage statistique de mieux traiter la nature séquentielle des problèmes de gestion de portefeuilles financiers. Nous débutons par une considération du problème général de la composition d'algorithmes d'apprentissage devant gérer des tâches séquentielles, en particulier celui de la mise-à-jour efficace des ensembles d'apprentissage dans un cadre de validation séquentielle. Nous énumérons les desiderata que des primitives de composition doivent satisfaire, et faisons ressortir la difficulté de les atteindre de façon rigoureuse et efficace. Nous poursuivons en présentant un ensemble d'algorithmes qui atteignent ces objectifs et présentons une étude de cas d'un système complexe de prise de décision financière utilisant ces techniques. Nous décrivons ensuite une méthode générale permettant de transformer un problème de décision séquentielle non-Markovien en un problème d'apprentissage supervisé en employant un algorithme de recherche basé sur les K meilleurs chemins. Nous traitons d'une application en gestion de portefeuille où nous entraînons un algorithme d'apprentissage à optimiser directement un ratio de Sharpe (ou autre critère non-additif incorporant une aversion au risque). Nous illustrons l'approche par une étude expérimentale approfondie, proposant une architecture de réseaux de neurones spécialisée à la gestion de portefeuille et la comparant à plusieurs alternatives. Finalement, nous introduisons une représentation fonctionnelle de séries chronologiques permettant à des prévisions d'être effectuées sur un horizon variable, tout en utilisant un ensemble informationnel révélé de manière progressive. L'approche est basée sur l'utilisation des processus Gaussiens, lesquels fournissent une matrice de covariance complète entre tous les points pour lesquels une prévision est demandée. Cette information est utilisée à bon escient par un algorithme qui transige activement des écarts de cours (price spreads) entre des contrats à terme sur commodités. L'approche proposée produit, hors échantillon, un rendement ajusté pour le risque significatif, après frais de transactions, sur un portefeuille de 30 actifs.
Resumo:
Dans ce travail, nous explorons la faisabilité de doter les machines de la capacité de prédire, dans un contexte d'interaction homme-machine (IHM), l'émotion d'un utilisateur, ainsi que son intensité, de manière instantanée pour une grande variété de situations. Plus spécifiquement, une application a été développée, appelée machine émotionnelle, capable de «comprendre» la signification d'une situation en se basant sur le modèle théorique d'évaluation de l'émotion Ortony, Clore et Collins (OCC). Cette machine est apte, également, à prédire les réactions émotionnelles des utilisateurs, en combinant des versions améliorées des k plus proches voisins et des réseaux de neurones. Une procédure empirique a été réalisée pour l'acquisition des données. Ces dernières ont fourni une connaissance consistante aux algorithmes d'apprentissage choisis et ont permis de tester la performance de la machine. Les résultats obtenus montrent que la machine émotionnelle proposée est capable de produire de bonnes prédictions. Une telle réalisation pourrait encourager son utilisation future dans des domaines exploitant la reconnaissance automatique de l'émotion.
Resumo:
Malgré des progrès constants en termes de capacité de calcul, mémoire et quantité de données disponibles, les algorithmes d'apprentissage machine doivent se montrer efficaces dans l'utilisation de ces ressources. La minimisation des coûts est évidemment un facteur important, mais une autre motivation est la recherche de mécanismes d'apprentissage capables de reproduire le comportement d'êtres intelligents. Cette thèse aborde le problème de l'efficacité à travers plusieurs articles traitant d'algorithmes d'apprentissage variés : ce problème est vu non seulement du point de vue de l'efficacité computationnelle (temps de calcul et mémoire utilisés), mais aussi de celui de l'efficacité statistique (nombre d'exemples requis pour accomplir une tâche donnée). Une première contribution apportée par cette thèse est la mise en lumière d'inefficacités statistiques dans des algorithmes existants. Nous montrons ainsi que les arbres de décision généralisent mal pour certains types de tâches (chapitre 3), de même que les algorithmes classiques d'apprentissage semi-supervisé à base de graphe (chapitre 5), chacun étant affecté par une forme particulière de la malédiction de la dimensionalité. Pour une certaine classe de réseaux de neurones, appelés réseaux sommes-produits, nous montrons qu'il peut être exponentiellement moins efficace de représenter certaines fonctions par des réseaux à une seule couche cachée, comparé à des réseaux profonds (chapitre 4). Nos analyses permettent de mieux comprendre certains problèmes intrinsèques liés à ces algorithmes, et d'orienter la recherche dans des directions qui pourraient permettre de les résoudre. Nous identifions également des inefficacités computationnelles dans les algorithmes d'apprentissage semi-supervisé à base de graphe (chapitre 5), et dans l'apprentissage de mélanges de Gaussiennes en présence de valeurs manquantes (chapitre 6). Dans les deux cas, nous proposons de nouveaux algorithmes capables de traiter des ensembles de données significativement plus grands. Les deux derniers chapitres traitent de l'efficacité computationnelle sous un angle différent. Dans le chapitre 7, nous analysons de manière théorique un algorithme existant pour l'apprentissage efficace dans les machines de Boltzmann restreintes (la divergence contrastive), afin de mieux comprendre les raisons qui expliquent le succès de cet algorithme. Finalement, dans le chapitre 8 nous présentons une application de l'apprentissage machine dans le domaine des jeux vidéo, pour laquelle le problème de l'efficacité computationnelle est relié à des considérations d'ingénierie logicielle et matérielle, souvent ignorées en recherche mais ô combien importantes en pratique.
Resumo:
Cette thèse étudie la représentation de la machine chez Robida. La partie centrale de notre recherche s’intéresse à révéler ses significations et interroge sa mise en scène littéraire et visuelle dans chacun des romans de la trilogie d’anticipation scientifique la plus connue de l’auteur-illustrateur. La quête se transforme en un voyage continu entre le lisible et le visible, le dit et le non-dit, la description littéraire et l’imagination, la réalité et la fiction. Nous nous intéressons à l’évolution de la vision de Robida : dans Le Vingtième siècle, l’image de la machine bienfaisante, facilitant la vie de l’homme, économisant du temps et de l’argent, et contribuant largement à son bonheur et à son divertissement, à part quelques accidents très limités, se traduit par une complémentarité avantageuse entre le texte d’une part et les vignettes, les tableaux et les hors-textes se trouvant dans le récit, d’autre part. Celle-ci se transforme, dans La Guerre au vingtième siècle, en une inquiétude vis-à-vis de l’instrumentalisation de la machine pour la guerre, qui s’exprime par une projection de la narration vers l’illustration in-texte, et sensibilise le lecteur en montrant le caractère violent et offensif d’appareils uniquement nommés. Celle-ci devient finalement, dans La Vie électrique, synonyme d’un pessimisme total quant à l’implication de la machine dans la société et à la puissance du savoir scientifique dans l’avenir, qui s’affiche dans des hors-textes sombres et maussades. Dans ce cadre, la machine illustrée exige une lecture iconotextuelle, une importance accordée au détail, aux éléments présents ou absents, aux modalités de passage d’un mode de présentation à l’autre, à la place anticipée ou tardive de l’illustration, au rapport entre le texte, le dessin et sa légende, aux mots qui migrent vers le dessin et surtout au reste du décor incomplet. Chez Robida, les louanges qui passent à la critique et l’humour qui se fait cynisme, sont assez représentatifs des espoirs et des craintes suscités par la découverte et la mise en application de l’électricité, par ses vertus, mais aussi par son aspect incontrôlable.
Resumo:
L’observation de l’exécution d’applications JavaScript est habituellement réalisée en instrumentant une machine virtuelle (MV) industrielle ou en effectuant une traduction source-à-source ad hoc et complexe. Ce mémoire présente une alternative basée sur la superposition de machines virtuelles. Notre approche consiste à faire une traduction source-à-source d’un programme pendant son exécution pour exposer ses opérations de bas niveau au travers d’un modèle objet flexible. Ces opérations de bas niveau peuvent ensuite être redéfinies pendant l’exécution pour pouvoir en faire l’observation. Pour limiter la pénalité en performance introduite, notre approche exploite les opérations rapides originales de la MV sous-jacente, lorsque cela est possible, et applique les techniques de compilation à-la-volée dans la MV superposée. Notre implémentation, Photon, est en moyenne 19% plus rapide qu’un interprète moderne, et entre 19× et 56× plus lente en moyenne que les compilateurs à-la-volée utilisés dans les navigateurs web populaires. Ce mémoire montre donc que la superposition de machines virtuelles est une technique alternative compétitive à la modification d’un interprète moderne pour JavaScript lorsqu’appliqué à l’observation à l’exécution des opérations sur les objets et des appels de fonction.
Resumo:
De plus en plus de recherches sur les Interactions Humain-Machine (IHM) tentent d’effectuer des analyses fines de l’interaction afin de faire ressortir ce qui influence les comportements des utilisateurs. Tant au niveau de l’évaluation de la performance que de l’expérience des utilisateurs, on note qu’une attention particulière est maintenant portée aux réactions émotionnelles et cognitives lors de l’interaction. Les approches qualitatives standards sont limitées, car elles se fondent sur l’observation et des entrevues après l’interaction, limitant ainsi la précision du diagnostic. L’expérience utilisateur et les réactions émotionnelles étant de nature hautement dynamique et contextualisée, les approches d’évaluation doivent l’être de même afin de permettre un diagnostic précis de l’interaction. Cette thèse présente une approche d’évaluation quantitative et dynamique qui permet de contextualiser les réactions des utilisateurs afin d’en identifier les antécédents dans l’interaction avec un système. Pour ce faire, ce travail s’articule autour de trois axes. 1) La reconnaissance automatique des buts et de la structure de tâches de l’utilisateur, à l’aide de mesures oculométriques et d’activité dans l’environnement par apprentissage machine. 2) L’inférence de construits psychologiques (activation, valence émotionnelle et charge cognitive) via l’analyse des signaux physiologiques. 3) Le diagnostic de l‘interaction reposant sur le couplage dynamique des deux précédentes opérations. Les idées et le développement de notre approche sont illustrés par leur application dans deux contextes expérimentaux : le commerce électronique et l’apprentissage par simulation. Nous présentons aussi l’outil informatique complet qui a été implémenté afin de permettre à des professionnels en évaluation (ex. : ergonomes, concepteurs de jeux, formateurs) d’utiliser l’approche proposée pour l’évaluation d’IHM. Celui-ci est conçu de manière à faciliter la triangulation des appareils de mesure impliqués dans ce travail et à s’intégrer aux méthodes classiques d’évaluation de l’interaction (ex. : questionnaires et codage des observations).
Resumo:
L'utilisation des méthodes formelles est de plus en plus courante dans le développement logiciel, et les systèmes de types sont la méthode formelle qui a le plus de succès. L'avancement des méthodes formelles présente de nouveaux défis, ainsi que de nouvelles opportunités. L'un des défis est d'assurer qu'un compilateur préserve la sémantique des programmes, de sorte que les propriétés que l'on garantit à propos de son code source s'appliquent également au code exécutable. Cette thèse présente un compilateur qui traduit un langage fonctionnel d'ordre supérieur avec polymorphisme vers un langage assembleur typé, dont la propriété principale est que la préservation des types est vérifiée de manière automatisée, à l'aide d'annotations de types sur le code du compilateur. Notre compilateur implante les transformations de code essentielles pour un langage fonctionnel d'ordre supérieur, nommément une conversion CPS, une conversion des fermetures et une génération de code. Nous présentons les détails des représentation fortement typées des langages intermédiaires, et les contraintes qu'elles imposent sur l'implantation des transformations de code. Notre objectif est de garantir la préservation des types avec un minimum d'annotations, et sans compromettre les qualités générales de modularité et de lisibilité du code du compilateur. Cet objectif est atteint en grande partie dans le traitement des fonctionnalités de base du langage (les «types simples»), contrairement au traitement du polymorphisme qui demande encore un travail substantiel pour satisfaire la vérification de type.
Resumo:
On étudie l’application des algorithmes de décomposition matricielles tel que la Factorisation Matricielle Non-négative (FMN), aux représentations fréquentielles de signaux audio musicaux. Ces algorithmes, dirigés par une fonction d’erreur de reconstruction, apprennent un ensemble de fonctions de base et un ensemble de coef- ficients correspondants qui approximent le signal d’entrée. On compare l’utilisation de trois fonctions d’erreur de reconstruction quand la FMN est appliquée à des gammes monophoniques et harmonisées: moindre carré, divergence Kullback-Leibler, et une mesure de divergence dépendente de la phase, introduite récemment. Des nouvelles méthodes pour interpréter les décompositions résultantes sont présentées et sont comparées aux méthodes utilisées précédemment qui nécessitent des connaissances du domaine acoustique. Finalement, on analyse la capacité de généralisation des fonctions de bases apprises par rapport à trois paramètres musicaux: l’amplitude, la durée et le type d’instrument. Pour ce faire, on introduit deux algorithmes d’étiquetage des fonctions de bases qui performent mieux que l’approche précédente dans la majorité de nos tests, la tâche d’instrument avec audio monophonique étant la seule exception importante.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Depuis la révolution industrielle, l’évolution de la technologie bouleverse le monde de la fabrication. Aujourd'hui, de nouvelles technologies telles que le prototypage rapide font une percée dans des domaines comme celui de la fabrication de bijoux, appartenant jadis à l'artisanat et en bouscule les traditions par l'introduction de méthodes plus rapides et plus faciles. Cette recherche vise à répondre aux deux questions suivantes : - ‘En quoi le prototypage rapide influence-t-il la pratique de fabrication de bijoux?’ - ‘En quoi influence-t-il de potentiels acheteurs dans leur appréciation du bijou?’ L' approche consiste en une collecte de données faite au cours de trois entretiens avec différents bijoutiers et une rencontre de deux groupes de discussion composés de consommateurs potentiels. Les résultats ont révélé l’utilité du prototypage rapide pour surmonter un certain nombre d'obstacles inhérents au fait-main, tel que dans sa géométrie, sa commercialisation, et sa finesse de détails. Cependant, il se crée une distance entre la main du bijoutier et l'objet, changeant ainsi la nature de la pratique. Cette technologie est perçue comme un moyen moins authentique car la machine rappelle la production de masse et la possibilité de reproduction en série détruit la notion d’unicité du bijou, en réduisant ainsi sa charge émotionnelle. Cette recherche propose une meilleure compréhension de l'utilisation du prototypage rapide et de ses conséquences dans la fabrication de bijoux. Peut-être ouvrira-t-elle la voie à une recherche visant un meilleur mariage entre cette technique et les méthodes traditionnelles.
Resumo:
L’objectif de cette thèse par articles est de présenter modestement quelques étapes du parcours qui mènera (on espère) à une solution générale du problème de l’intelligence artificielle. Cette thèse contient quatre articles qui présentent chacun une différente nouvelle méthode d’inférence perceptive en utilisant l’apprentissage machine et, plus particulièrement, les réseaux neuronaux profonds. Chacun de ces documents met en évidence l’utilité de sa méthode proposée dans le cadre d’une tâche de vision par ordinateur. Ces méthodes sont applicables dans un contexte plus général, et dans certains cas elles on tété appliquées ailleurs, mais ceci ne sera pas abordé dans le contexte de cette de thèse. Dans le premier article, nous présentons deux nouveaux algorithmes d’inférence variationelle pour le modèle génératif d’images appelé codage parcimonieux “spike- and-slab” (CPSS). Ces méthodes d’inférence plus rapides nous permettent d’utiliser des modèles CPSS de tailles beaucoup plus grandes qu’auparavant. Nous démontrons qu’elles sont meilleures pour extraire des détecteur de caractéristiques quand très peu d’exemples étiquetés sont disponibles pour l’entraînement. Partant d’un modèle CPSS, nous construisons ensuite une architecture profonde, la machine de Boltzmann profonde partiellement dirigée (MBP-PD). Ce modèle a été conçu de manière à simplifier d’entraînement des machines de Boltzmann profondes qui nécessitent normalement une phase de pré-entraînement glouton pour chaque couche. Ce problème est réglé dans une certaine mesure, mais le coût d’inférence dans le nouveau modèle est relativement trop élevé pour permettre de l’utiliser de manière pratique. Dans le deuxième article, nous revenons au problème d’entraînement joint de machines de Boltzmann profondes. Cette fois, au lieu de changer de famille de modèles, nous introduisons un nouveau critère d’entraînement qui donne naissance aux machines de Boltzmann profondes à multiples prédictions (MBP-MP). Les MBP-MP sont entraînables en une seule étape et ont un meilleur taux de succès en classification que les MBP classiques. Elles s’entraînent aussi avec des méthodes variationelles standard au lieu de nécessiter un classificateur discriminant pour obtenir un bon taux de succès en classification. Par contre, un des inconvénients de tels modèles est leur incapacité de générer deséchantillons, mais ceci n’est pas trop grave puisque la performance de classification des machines de Boltzmann profondes n’est plus une priorité étant donné les dernières avancées en apprentissage supervisé. Malgré cela, les MBP-MP demeurent intéressantes parce qu’elles sont capable d’accomplir certaines tâches que des modèles purement supervisés ne peuvent pas faire, telles que celle de classifier des données incomplètes ou encore celle de combler intelligemment l’information manquante dans ces données incomplètes. Le travail présenté dans cette thèse s’est déroulé au milieu d’une période de transformations importantes du domaine de l’apprentissage à réseaux neuronaux profonds qui a été déclenchée par la découverte de l’algorithme de “dropout” par Geoffrey Hinton. Dropout rend possible un entraînement purement supervisé d’architectures de propagation unidirectionnel sans être exposé au danger de sur- entraînement. Le troisième article présenté dans cette thèse introduit une nouvelle fonction d’activation spécialement con ̧cue pour aller avec l’algorithme de Dropout. Cette fonction d’activation, appelée maxout, permet l’utilisation de aggrégation multi-canal dans un contexte d’apprentissage purement supervisé. Nous démontrons comment plusieurs tâches de reconnaissance d’objets sont mieux accomplies par l’utilisation de maxout. Pour terminer, sont présentons un vrai cas d’utilisation dans l’industrie pour la transcription d’adresses de maisons à plusieurs chiffres. En combinant maxout avec une nouvelle sorte de couche de sortie pour des réseaux neuronaux de convolution, nous démontrons qu’il est possible d’atteindre un taux de succès comparable à celui des humains sur un ensemble de données coriace constitué de photos prises par les voitures de Google. Ce système a été déployé avec succès chez Google pour lire environ cent million d’adresses de maisons.